
PHP zOS1

PHP for zOS

Wayne Duquaine

Grandview Systems

Phone: 707-829-9633
E-mail: grandvu@sonic.net

Share Tech Conference August 2010

PHP zOS2

Outline
Quick Overview of PHP

Quick Overview of IBM’s PHP Support on z/OS

Language - Part 1 – Basic Syntax

Language – Part 2 – Functions, Scripts

Constructing a Simple PHP Application

PHP zOS3

PHP Dominates the Web
PHP dominates the Server Side Web tools/apps market
» Is THE most popular web server language for creating Web sites
» 34+ % of all Web applications use PHP

PHP runs on 22 million registered web domain servers
» Over 2.5 million PHP programmers

PHP ASP

Other

Source: www.nexen.net

PHP zOS4

What is PHP

PHP is a server-side language
» a high-speed script processor that is used to quickly create Web

Pages, process XML, and access Databases
» Runs inside the Web Server

Unlike Java or other interpretive language, PHP’s focus is to
use the script to invoke “native” C subroutines that do the
actual work at full speed, i.e.
» PHP script provides If/Then/Else/While control logic to invoke

native C functions that do the actual work.
(versus Java where everything is interpreted). The script invokes the
appropriate C subroutine to handle the request

» Most PHP implementations provides “caching” support for scripts, so
that they are parsed only once.

– Result is near native speeds, e.g.
– Can scale to 130 million PHP requests per day (CommunityConnect)

PHP zOS5

Why use PHP
Short Learning Curve
» PHP is faster and easier to learn than any other Web programming

language

Quick Development Time
» Scripts are 5 – 10 times more productive than hand coding a Server

application (Java or C) from scratch.

Fast Performance

Easily integrates DBMS processing with HTML/XML
processing

PHP zOS6

High Level View: PHP as Web PlugIn

Web Server
Apache, IIS, …

PHP

PHP Processor

Zend Engine
Parses and executes PHP scripts

EXT Modules

XML processing
SOAP

DBMS

. . .

execute: somereq.php

Static
files

DB2

Browser

The EXT modules are all “native” C subroutines, that are called by the PHP processor
as it executes the .php script. These are the things that do the actual work (read from a
database or file, execute a SOAP request, …)

PHP zOS7

PHP Operation
PHP operates in one of two modes:

» As an “embedded” plug-in that runs inside a Server
– Apache
– IIS
– CICS

» As a “stand-alone” utility that can be executed under USS
command line

(like a REXX or PERL script)

PHP zOS8

PHP Operation on z/OS
IBM provides two versions of PHP on the mainframe:

» A standard “C” based version that is built using the standard PHP C
source code. It is complaint with PHP 5.2.

» It runs as a “Command Line” (CLI) version under USS.
Provides same level of support as any of the CLI versions of PHP that
run on PCs or Linux.

» Is available free from IBM.

» A “Java” based version of PHP, that IBM created, that re-implements
PHP using Java instead of C. It is compatible with PHP 5.2

» It runs as a plug-in for both CICS and for WebSphere.
» Is the basis for IBM’s new sMASH technology.

– Development has been spun off as a separate organization: “projectzero,org”

PHP zOS9

PHP Operation on CICS - 1
Uses the Java Based PHP plug-in

Supports PHP 5.2 and most of the major PHP libraries

Comes with LOTs of tools, including DoJo and sMash
framework

All of the PHP language facilities covered in this presentation
are supported by CICS’s PHP support

DBMS support to DB2 is provided via standard PHP PDO
objects

PHP zOS10

PHP Operation on CICS - 2
For debug and testing, they also provide a CLI tool that you can
use to invoke PHP scripts under CICS
» Uses EXCI to communicate to the PHP script processor under CICS

All PHP scripts are kept in zFS on USS

Can invoke COBOL/PL1/C/ASM CICS Apps via PHP LINK call.
» PHP provides a “wrapper class” that is used to access/update fields in

the COMMAREA.
» The PHP wrapper class invokes a set of Java “accessor” classes that

were generated from the COMMAREA ADATA descriptors
» Tooling for generating the Java “accessor” classes is provided by JZOS

Can extend CICS PHP support via IBM supplied “Java/PHP
Bridge” support

PHP zOS11

PHP Language – Part 1
Language Overview
» Syntax is very similar to C / Java / Javascript languages

– If / Then / Else
– While and Do While
– For loops
– Switch / Case statements
– Semi-colon ; is used to separate statements
– Can use # or // or /* */ for comments
– { } are used to group statements into a block
– [] are used for array subscripts

PHP zOS12

PHP Language Basics
Variables

Operators

Expressions

Flow of Control Constructs

Comments

PHP zOS13

PHP Language - Variables
Variable names always start with $ followed by 1-n
alphanumerics, e.g. $abc456

Variable names are case sensitive.
$abc is not the same variable as $ABC

Is “loosely” typed language
» No explicit int/float/string/boolean data type notation.
» PHP automatically derives the data type based on what it parses:

– Strings with quotes (‘ or “) = char string
– Number without decimal point = integer
– Number with decimal point = floating point number

Has conversion and casting functions to convert
e.g. convert a char string to int/float or vice versa:

$b = (int) $strNum;

PHP zOS14

Variables – Data Types
String

Integer

Double (floating point)

Boolean

Array

Resource (file or database connection)

Object (PHP class – new in PHP 5)

PHP zOS15

Variables - contd
During execution, uses Java style garbage collection to
automatically free up de-referenced, un-used variables.

Always automatically cleans up and frees any variables and
open file/database connections (resources) when a script
ends or is terminated.

PHP zOS16

Literals
Can have string literals and numeric literals, including
hexadecimal literals

$strval = “abcdefg”;

$intnum = 123;
$floatnum = 45.66;
$float2 = 0.314E1;

$booleanval = true;

$hexnum = 0x1234;

$val = null; // variable’s value is gone

PHP zOS17

Strings – Additional Details
Strings come in two forms:
» Single quote: any embedded $xxx names are ignored
» Double quote: any embedded $xxx names will have the associated

variable substituted in

» print ‘this will literally print $xyz’;
» print “this will substitute the value for variable $xyz”;
» print ‘mix quotes name=“abc” in a string’;
» print “use \\ escape characters \n”;

Are a whole group of string operators and functions:
» Access a specific character in a string: $strVal[5]; // get 5th character
» Concatenate two strings: $st = ‘Add this ‘ . $val . ‘ together’;
» Trim spaces off a string: $x = trim($strval);
» Force to uppercase or lowercase: strtoupper($val); strtolower($val);
» Many more string functions – see PHP manual

PHP zOS18

Operators
PHP operator syntax is similar to the operators used in C,
Java, Javascript

Arithmetic operators
» + - * / %
» Use parenthesis to specify precedence order: $x + ($y / 100)

AutoIncrement/AutoDecrement operators
» ++ ---
» ++$x adds 1 to $x and then uses the result in the expression
» $x++ uses $x in the expression, then adds 1 to it

Shift and Bit operators
» >> << & | ~
» $x >> 4 will shift $x contents right by 4 bits
» $x | $y will logically OR the contents of $x and $y

PHP zOS19

Operators - contd

Assignment operators (syntax is similar to C, Java)
» = += -= *= /= %=
» $x = $y assigns the value of $y to $x
» $x += $y is equivalent to $x = $x + $y
» $x *= $y is equivalent to $x = $x * $y
» $x %= $y is equivalent to $x = $x % $y (modulus operator)

PHP zOS20

Operators - contd
Comparison operators
» == < > <= >= !=
» Caution: If ($x == $y) will test for equality

$x = $y will set $x equal to $y

Conditional operators (and/or/not condition x)
» && || !
» Use these to group comparison conditions together, e.g.

if ($x == $y && $x < $y)

Many other operators not listed here (see the manual)

PHP zOS21

Expressions

An expression is a series of variables, operators, and
method calls that evaluate to a single result value

Use parenthesis to specify precedence order
$z = $a + (($x * 100) / ($y * 100));

PHP zOS22

Flow of Control Constructs
IF / THEN / ELSE

WHILE and DO / WHILE

FOR loops

SWITCH / CASE statements

PHP zOS23

IF / THEN / ELSE
if (boolean_expression)

next_statetment;
else someother statement;

» if the condition is true it executes the next statement, otherwise it
execute the else clause.

» Curly braces are used to delimit blocks of code { }

if ($x < $y)
{ $hours = $hours + 1;

$a = $y;
}

else $a = $x;

PHP zOS24

WHILE loops
while (boolean_expression)

{ statements;
}

» boolean_expression evaluated at the top of each loop
» Body is executed if boolean_expression evaluates to true
» Can use break; to force exit from the loop
» Can use continue; to skip processing rest of statements and go

back to top of while loop

while ($x < $y)
{ $x++;
$a = $b + $x;
if ($a < $p)

continue; // skip back to top of while()
if ($a > $y)

break; // exit from while loop
}

PHP zOS25

DO / WHILE loops
do {

statements;
} while (boolean_expression)

» boolean_expression evaluated at the bottom of each loop
» Body is always executed at least once
» Can use break; to force exit from the loop
» Can use continue; to skip processing rest of statements and go

back to top of loop

do { $x++;
$a = $b + $x;
if ($a < $p)

continue; // skip back to top of loop
if ($a > $y)

break; // exit from loop
} while ($x < $y)

PHP zOS26

FOR loops
for (initialization ; continuation_expr ; increment_expr)

{
statements;

}

» initialization is executed once at the beginning
» increment_expr is executed each time, at the bottom of the loop
» continuation_expr is executed at the top of every iteration

the loop terminates when continuation_expr is false

for ($i = 0; $i < 3; $i++)
{ $a = $i * $z;
print (“<td> $a </td>”);

}

PHP zOS27

SWITCH / CASE
switch (expression)
{ case x:

statements for case x;
break;

case y:
statements for case y;
break;

default:
statements for default case;

}

» Used to make a choice between multiple, alternative execution paths
» Choice (expression, x, y) can be either an integer or a string
» The break statement is option. If omitted, execution drops through to the

next case statement.
» The default clause catches all other conditions

PHP zOS28

Switch/Case statements - contd
switch ($int_var)

{ case 1:
print $int_var; // then drops through

case 2:
$a = $x + $y
break;

}

switch ($string_var)
{ case "ABC":

print ("choice was ABC");
break;

case "XYZ":
print ("choice was XYZ");
break;

default:
print ("choice was none of the above");

}

PHP zOS29

Comments
Provides several different options
» Comment only the current line

sign
//

» Comment across one or more lines
/* some comments

more comments
*/

Examples
comments here
$x = $y; // comments here
/* a comment

across several lines
*/

PHP zOS30

PHP Language – Part II
Functions

Classes

Arrays

Basics of setting up a <?php xxx> script

PHP zOS31

Functions
Calling functions is part of the heart and soul of PHP

Are two types of functions:
» Built-in functions – pre-compiled functions compiled into PHP.

For C-based PHP, these are C sub-routines that have been compiled
and linked into PHP, and are part of the EXT Modules of PHP
– Static functions – compiled directly into PHP
– Dynamic functions – DLLs that are loaded as needed (third party add-ons)
For Java-based PHP, these are implemented as jar files.

» User-defined functions – PHP routines defined by the customer
– User-defined functions are always interpreted (can be cached)
– If maximum speed is required, can re-write into a PHP “extension” instead

Both types of functions use the same calling conventions:
» Uses C/Java style calling syntax

$x = function_abc ($a, $b);
» Can return simple data types (integer, string, float) or

complex data types (arrays, resources, class objects)

PHP zOS32

Typical Built-In Functions
Sample list of the most popular PHP functions:
» HTML processing: header/strip_tags/htmlentities/ …
» File access: fopen/fwrite/fread/fclose/mkdir/opendir/copy/ …
» Database access: PDO objects
» XML processing: DOM parse/read/update/write/ …
» URL processing: parse_url/base64_decode/base64_encode/ …
» Session processing: setcookie/session_start/session_register/ …
» Date/Time manipulation: getdate/checkdate/ …
» Array processing: read/write/create/sort/search/re-order array data
» Math: abs/acos/atan/exp/max/min/rand/sqrt/ …
» Logging: write to log, trigger error handlers, …
» Echo/print/printf: write out text or variables to a file or HTTP

connection

Are over 200 built-in functions

PHP zOS33

User Defined Functions
Declaring a user function
» Use function keyword, followed by name of function, followed by parms.
» Body of the function is then encapsulated in { } block.
» Function names must start with alphabetic char or underscore.

function std_page_header ($title,$color)
{ print “<html><head><title>$title</title></head>”;
print ‘<body bgcolor=“ ‘#.$color.’ ”>’;

} // ^ ^ concatenate strings

Parameters can be assigned default values

function std_page_header ($title=‘XYZ Corp’, $color=‘cc00cc’)
{ same as above }

Functions can return simple or complex values

PHP zOS34

User Functions – Returning Simple Values

Return simple value:
function compute_sales_tax ($meal)

{ $tax_amount = $meal * (8.5 / 100);
return $tax_amount; // returns a simple number

}

Usage:
$s_tax = compute_sales_tax ($meal_amount);

PHP zOS35

User Functions – Returning Arrays
Return complex value (array, …)

function compute_tax_and_tip ($meal)
{ $tax_amount = $meal * (8.5 / 100);

$tip_amount = $meal * (15 / 100);
return array ($tax_amount, $tip_amount); // returns an array

}

Usage:
$totals = compute_tax_and_tip ($meal_amount);
print “meal=$meal_amount tax=$totals[0] tip=$totals[1]”;

PHP zOS36

Incorporating User Defined Functions
Can include inline or via include statement

Inline
<?php

function abc ($parm1)
{ $val2 = parm1 / 50;

return $val2 * 1000;
}

$ret_val = abc (123);
print $ret_val;

?>

Include from a separate file (eg. a library of common functions)
<?php

include (“abc.inc”);

$ret_val = abc (123);
print $ret_val;

?>

PHP zOS37

Classes / Objects
New in PHP5
» Allows programmer to use object oriented approach similar to Java
» CICS PHP uses classes extensively

Declaring a class:
class classnameXYZ

{ var $property1 = value;

function methodname1 (args)
{ statements;

return $resultVal;
}

. . .
}

Invoking a class:
$aclass = new classnameXYZ();
$result = $aclass->methoname1 ($somearg);
$propval = $aclass->property1; // note no $ on property1

PHP zOS38

PDO Objects – DBMS Access
<?php
try {

$db = new PDO (“ibm:DRIVER={IBM DB2 ODBC DRIVER};
DATABASE=accounts; HOSTNAME=1.2.3,4;PORT=56789;
PROTOCOL=TCPIP;", "username", "password");

$count = $db->exec ("INSERT INTO animals(animal_type, animal_name)
VALUES (‘dogs', ‘penelope')");

print ”num rows affected = $count \n”; // tell number of rows affected

$sqlstmt = "SELECT * FROM animals";
print “Query results:\n”;
foreach ($db->query($sqlstmt) as $row)

{
print $row['animal_type'] . ' - ‘ . $row['animal_name'] . '
';

}

$db = null; // closes the database connection
}

catch (PDOException $e) { echo $e->getMessage(); }
?>

PHP zOS39

PHP Arrays
Array = primary vehicle for passing data around:
» HTTP Server variables (query string, remote host, browser name)
» HTTP POSTed Forms variables
» Database Row Results (each row = an array);

Array data can be accessed via either name or number
» all arrays are associative arrays using hashed lookup, e.g.

$browserName = $_SERVER [‘HTTP_USER_AGENT’];
$firstValue = $someArray [0];

To “walk” through all elements in an array, use the foreach()
function:

$meal = array (‘breakfast’ => ‘cereal’, lunch => ‘sandwich’);
foreach ($meal as $key => $value)

print “meal is $key and we serve $value\n”;

PHP zOS40

PHP Arrays
Arrays can be single dimensional or multiple dimensional:

Single Dimension:
$simpArray = array (‘name’ => ‘Vic’,

‘age’ => 40);

Multiple dimension:
$multDim = array (‘name’ => ‘Vic’,

‘residences’ => array (‘home’ => ‘Sebastopol’,
‘dacha’ => ‘Green Bay’),

‘age’ => 40);

$vacationspot = $multDim [‘residences’] [‘dacha’];

Anonymous array (no associative names):
$anonArray = (‘ABC’, ‘DEF’, ‘GHK’);
$element2 = $anonArray[1];

First element of an array is always [0]

PHP zOS41

Arrays used for Passing Web Data In

xyz.php?name=Jim&age=40

Method: GET

Incoming HTTP Requests Associated PHP Array

$cust_name = $_GET [‘name’];
$cust_age = $_GET [‘age’];

abc.php
action=sell
num=100
price=20.00

Method: POST
$action_id = $_POST [‘action’];
$num_shares = $_POST [‘num’];
$share_price = $_POST [‘price’];

Note: CICS PHP supports all of this stuff !

PHP zOS42

Using key PHP Arrays in Web Apps
Server information is kept in $_SERVER array, e.g.

$_SERVER [‘REQUEST_METHOD’] // GET or POST
$_SERVER [‘REMOTE_HOST’]
$_SERVER [‘SCRIPT_NAME’]

many more – see manual

Input parameters are extracted by name from appropriate array
($_GET or $_POST) based upon the type of request:
» GET requests: $abc = $_GET [‘parm_name1’];
» POST requests: $xyz = $_POST [‘parm_name’];

Session/Cookie related information is extracted from
$_COOKIE array

PHP zOS43

Building a <?php > script
A PHP-enabled Web Server detects PHP scripts based on the
.php suffix, and passes the request to the PHP processor for
execution

PHP commands are encoded within <?php (start)
and ?> (end) markers
» Any valid PHP function or PHP class can be invoked from within a PHP

script

PHP has similarities with Microsoft’s ASP and Java’s JSP
technology:
» For Web apps, PHP commands can be embedded within HTML and

XML pages.
» Anything not within the PHP command markers is sent back to the Web

client as is (e.g. inline HTML or XML)

PHP zOS44

PHP – Generate Simple HTML Form
<html>
<head>
<title>Login Screen</title>
</head>

<body>
<?php

if (array_key_exists(‘user_name’,$_POST)) // see if input parm is in array
print “Hello, “ . $_POST[‘user_name’]; // yes, echo the user’s name
else // no, then request user’s name

// and send it back to this same page
print “<form method=‘post’ action=‘$_SERVER[‘SCRIPT_NAME’]’>

Login Name: <input type=‘text’ name=‘user_name’>

<input type=‘submit’ value=‘Log me on’>
</form>” // end of multi-line literal

?>
</body>
</html>

PHP zOS45

Sample Browser screen shot - Simple Form

Sites running PHP usually have their initial default HTML page redirect to a .php page,
which will then hand off to subsequent .php pages

PHP zOS46

Where to get more information
PHP Code download

http://www.php.net/downloads.php
PECL (PHP Extensions)

http://www.pecl.php.net/
PEAR (Libraries of PHP Routines)

http://www.pear.php.net/

Zend Engine
http://www.zend.com/

Learning PHP 5, Sklar, Oreilly & Associates

Programming PHP, Lerdorf, Tatroe, O’Reilly & Associates, ISBN1-
56592-610-2

PHP Cookbook, Sklar, Trachtenberg, Oreilly & Associates

Advanced PHP Programming, Schlossnagle, Sams Publishing

PHP zOS47

EOJ

