
Security Application Architecture
Development and Integration Overview

Bill O’Donnell
IBM CorporationIBM Corporation
Lead WebSphere Security Architect

August 5, 2010

Agenda

• Design and Architecture
• Web Based Applications Authentication and Authorization
• EJB Applications Authentication and Authorization
• Web Services
• Additional Security Features

2

• Additional Security Features
• Securing DB2

Note: This presentation will focus on WebSphere application
Server V6.1 and above. Any WebSphere Application Server V7
specific features will be noted.

Note: All the features discussed apply to all platforms
WebSphere Support. Any z/OS specific features will be
noted.

1074 – Security Application Architecture
Development and Integration Overview

Design Architecture

Security Architecture
Security

Consistency

Integration

Extensibility

Functionality
Required

LWP

WBIPortalWECM
ISC

Other Platform
Products &
Components

Commerce

CM

Progr Models
and APIs WAS Authn WAS ID MGMT RBAC+Privacy CredMap API WS Sec APIs Crypto/CMP APIs CEI-EE API

IT
Solutions

WebSphere Application Server

MQ, DB2
Tivoli, WE, ..
Legacy
products

4

Pluggable
Frameworks

Security
Components

Tivoli
Security
Products

Crypto, SSL
PKI
GSKIT
JCE, JSSE
CertPath
CMP, PKCS
Security SDK

Cred Mapping
JAAS Plug-pt
OOB TAM LockBox
OOB FTIM

ID Mgmt
WAS UR

Secure Audit
CBE/CEI
OOB Trail

WebService Sec
WS-Security
WS Trust
Encryption/Signature

User Registry
LocalOS
LDAP
DB

Authenticator
TAM-WebSeal
KDC

Authz/Privacy
Engines

TAM
TPM

Identity Mapper
TAM-Lockbox
FTIM

WIM SPI

Risk/Intrusion
Manager

TDW
CrystalReports
TRM

Authorization
and Privacy
JACC Plug-pt
Fine-grain
Privacy
OOB TAM, TPM

WAS Security Core

JAAS WIM API JACC JAAS WS Sec APIs Crypto/ API CEI-EE API

Authentication
Basic/LTPA
JGSS, Kerberos
SSO Tokens
SPNEGO

Unifying the WAS Code Base

Single Code
base for PME

Move all
processes
around a single
code base.

Common Test
Automation

An organizational initiative that spans several
releases aimed at merging our distributed and z/OS
code and processes for the benefit of our customers

5

WAS 5.0 WAS 5.0.x WAS 5.1 WAS 6.0

Common Security
Model
Parts 1 & 2

Common Samples

Z becomes
fully CTS
compliant

Common
Admin Model

base for PME

Common
Service for PME

code base.

WAS V6.x: common processes around a
single code base

§ Common source code management
§ Common build libraries
§ Automated functional test case reuse
§ Compliance Test Suite reuse
§ Common Customer Support

WAS 6.1 and beyond

Code base with single code library. Selective components not merged.

Some platform unique code where appropriate – security, transactions, WLM, scaling

Common designs, Common library, common build, common driver verification, common FCT with z/OS specific focus
Common SVT with z/OS specific focus, z/OS specific performance testing, Common announce
Common service with z/OS specific L2,

A continuing effort.

WebSphere Security Principles

• Secure by Default
• Starting with WAS V6.1, by design, we are secure out of

the box.
• WAS V7, additional defaults were change

• Ease of Use
• “Easy of use”, rich programming references, samples, etc.
• Standard Compliance
• Programming Flexibility
• Simple to report and fix security vulnerability
• Simple steps to configure

• Defense in Depth

6

• Defense in Depth
• WebSphere another layer of defense

• Accountability
• Users held accountable for their actions
• Ability to Audit
• WebSphere Auditing added in WAS V7

• Separation of Privileges
• No single person should have enough authority to cause a critical

event to take place

• Least Privilege
• Idea of granting just the least possible amount of privileges to permit

a legitimate action with the idea of preventing the malicious behavior

• Secure code is quality code
• Leave no Weakness in the code for exploitation

WebSphere Application Server
Secure by Default

• Since WAS V6.1, is secured
by default
• Security is enabled.
• Use WebSphere options that
are considered most secure.

• Additional configuration may

7

• Additional configuration may
be required to meet your
business requirements

• WebSphere Application Server Web Site
• We publish and maintain a detailed Security hardening documentation

• Consideration for a secure environment for WebSphere
• Consideration in properly securing your Applications
• Post any additional WAS options that should be considered.

• http://www.ibm.com/developerworks/websphere/zones/was/security/.

Ease of Use
• Administrative Security enabled out of the box
• Prior to WAS61, Security enablement resulted in both Administration Security
and Application Security enabled

• Administration Security and Application Security enablement is now separate
• Administrative Security is enabled out of the box to properly secure WAS
Server environment

• Simplified Security Configuration and Administration

8

• Simplified Security Configuration and Administration
• Simplified administrative console security panels
• New Security enablement wizard
• Security Configuration reporting Tool
• WebSphere Application Server V7 allows for multiple security configuration
within a Cell.

• Automatically generating server IDs
• You no longer need to specify a server user ID and password during security
configuration, unless using a mixed cell environment

Ease of Use (Continue)
• Simplified WebSphere key and Certificate
Management
• Allow you to use the key management tools from the

console
• Make it easier to configure SSL
• Manage Web server and plug-in certificates from the

console
• Use the Trust Manager to automatically trust host or

signers
• Make it easier to refresh an expiring certificate

9

• Make it easier to refresh an expiring certificate
• Certificates Expiration Monitor
• Easy utilities to handle Certificate exchange

• Federated Repository (VMM)
• Common identity management programming interface
• User Identity profile and relationship management
• Multiple changing of registry

• Signal Sign On (SSO) options
• SPNEGO and Kerberos
• Be sure to see our red book

http://www.redbooks.ibm.com/abstracts/sg247771.html?Open

• SAML for Web Servers WAS 7.0.0.7 and above

• LTPA

Ease of Use (Continue)

• Common Criteria Assurance Level 4 (EAL4)
• Certification that provides an independent assessment, analysis,

and Testing in providing customers the confidence that a given
product will be effective in delivering key security functions.

• WebSphere Application Server V7 was designed to meet or exceed
the security capabilities of WAS V6.1 including the EAL4
requirements.

• But, the US CCEVS is no longer certifying software products

10

• But, the US CCEVS is no longer certifying software products
as Common Criteria EAL compliant because they are moving
to a new security standard referred to as "Protection Profiles".
The "Protection Profiles" requirements for Middleware software
have been made available.

• Fully FIPS Compliant
• Supports the Federal Information Processing Standards(FIPS) 140-

2 Government standards.

Defense in depth
The elastic defense, or

defense in depth, is a military
tactic where the battlefield is
broken into zones - force and

space are used to build a
complementary attack
against the offensive –

thereby turning the tables

11

Layer 4
WebSphere Application Server

thereby turning the tables
and winning the war.

Layer 1
Network Layer 2

System z HW

Layer 3
Operating environment

Layer 5
Data

Defense in Depth was originally a military strategy that seeks to delay rather then prevent the advance of an attacker, buying time by yielding space. This concept is used today to increase protection with multiple lines of defenses. By using computer security techniques at varying depths of penetration you help mitigate the risk of defenses being compromised or circumvented.

Network

- TCPIP on z/OS
- z Intrusion Detection (you have to ask John Dayka the actual name of the product)

z HW
- Storage Key Protection Feature
- Hyper Sockets
- Cryptography
- Address Space Isolation
- Logical Partitioning which is Common Criteria (EAL5) compliant

zOS
Supervisor and problem State Design
SMF Auditing logging
Protection against the unknown
RACF for User Management and Access Management
Data Integrity
z/OS Public Key Infrastructure (PKI)
Common Criteria (EAL4) Compliant
Controlled Access Protection Profile (CAPP) compliant
Labeled Security Protection Profile) LSPP compliant

Tivoli on z

- Tivoli Identity Manager (TIM)
- Tivoli Federated Identity Manager (TFIM)
- Tivoli Directory Server (TDS)
- Tivoli Directory Integrator (TDI)
- zSecure

WebSphere App Server
- Security Management for the Business Applications
- Java 2 Platform, Enterprise Edition (J2EE) Security
- Authentication
- Resource Access Control
- Data Integrity
- Confidentiality
- Privacy
- Secure Interoperability
- Common Criteria (EAL4)
- Federal Information Processing Standards (FIPS) 140-2 Compliance
- WS-I Basic Security Profile 1.0 (draft)
- Web Services Security Version 1

z/OS for example defense in action

Let’s start with …

Zone 1: The Network
• z/OS Communications Server with integrated

intrusion detection capabilities

Zone 2: The System z9 server
• EAL 5 Common Criteria certified LPARs
• System z cryptographic technology featuring

the Crypto Express2

Zone 3 cont’d: The z/OS operating environment
• Centralized system level auditing to know who is

trying to access your system and when
• Resource Access Control Facility (RACF)

integrates with z/OS to provide centralized
enterprise level security & auditing up through
the software stack

• EAL4+ for Controlled Access Protection Profile

12

• HiperSockets security benefits compared to
communication alternatives like TCP/IP

• Storage Protection Keys can granularly
protect address spaces

• Coming soon: IP Security with zIIPs

Zone 3: The z/OS operating environment
• EAL 4+ Common Criteria certified multi-level

security
• Public Key Infrastructure (PKI) services

• EAL4+ for Controlled Access Protection Profile
(CAPP) and Labeled Security Protection Profile
(LSPP).

• Tivoli support for z/OS security, including access,
identity, compliance, et al

Zone 4: WebSphere Application Server
• Java 2 Platform Enterprise Edition (J2EE)

security
• EAL4 Common Criteria certified
• Federal Information Processing Standards

(FIPS) 140-2 Compliance

Zone 1- TCPIP on z/OS; - z Intrusion Detection (you have to ask John Dayka the actual name of the product)

Zone 2 -z HW
- Storage Key Protection Feature
- Hyper Sockets
- Cryptography
- Address Space Isolation
- Logical Partitioning which is Common Criteria (EAL5) compliant

zOS
Supervisor and problem State Design
SMF Auditing logging System Management Facilities (SMF) collect data for auditing. sshd2 collects SMF records for failed login attempts. The sft-server-g3 subsystem collects SMF records for the following events:
Download a file (retrieve)
Upload a file (store)
Append data to a file
Rename a file
Delete a file

Protection against the unknown
RACF for User Management and Access Management
Data Integrity
z/OS Public Key Infrastructure (PKI)
Common Criteria (EAL4) Compliant
Controlled Access Protection Profile (CAPP) compliant
Labeled Security Protection Profile) LSPP compliant

Tivoli on z

- Tivoli Identity Manager (TIM)
- Tivoli Federated Identity Manager (TFIM)
- Tivoli Directory Server (TDS)
- Tivoli Directory Integrator (TDI)
- zSecure

WebSphere App Server
- Security Management for the Business Applications
- Java 2 Platform, Enterprise Edition (J2EE) Security
- Authentication
- Resource Access Control
- Data Integrity
- Confidentiality
- Privacy
- Secure Interoperability
- Common Criteria (EAL4)
- Federal Information Processing Standards (FIPS) 140-2 Compliance
- WS-I Basic Security Profile 1.0 (draft)
Web Services Security Version 1

Sources cited:
Security whitepaperftp://ftp.software.ibm.com/common/ssi/rep_wh/n/ZSW03008USEN/ZSW03008USEN.PDF
Intrusion detection in Comm Server: http://www-03.ibm.com/servers/eserver/zseries/zos/commserver/intrusion_detection.html
Multi-level security: http://www-03.ibm.com/systems/z/security/mls.html
CAPP & LSPP: http://www-03.ibm.com/systems/z/security/ccs_certification.html
Tivoli FIM: http://www-306.ibm.com/software/tivoli/products/federated-identity-mgr/
Tivoli Portfolio of confusion: http://www-306.ibm.com/software/tivoli/sw-bycategory/indexS.html
Consul: ftp://ftp.software.ibm.com/software/tivoli/whitepapers/TIW10313-USEN-00.pdf

Why J2EE Security Model is important

• Defense in Depth calls for all layers to be
secure. Too often, the application layers is
ignored.

• J2EE Security Model is “very” abstract and
allows for
• Security administration and management handle by the

Infrastructure instead of custom applications.
• Security implementation technology is independent (from

13

• Security implementation technology is independent (from
application developer’s view)

• Application is expected to “lean”on server vendor
• Authentication is not application responsibility
• Applications deal only with authorization via declarations (in

XML) and/or simple APIs
• Container is the broker for Security
• Applications “leans” on the WAS Container
• WAS Container can administer Security or WAS Container

“leans” on an optional pluggable Security Solution to manage
the Security aspects of Users, Groups, and resource (roles).

• The J2EE Security specification is very high
level and provides only minimal APIs

J2EE Security Model

META-INF/web.xml META-INF/ejb-jar.xml
Servlet JSP EJB

myApp.WAR myApp.jar

14

• The web.xml is the deployment descriptor for the Web
modules for the application and contains the security-
constraints.

• The ejb-jar.xml is the deployment descriptor for the EJB
modules for the application and contains the security
method-permissions.

WebSphere Auditing added in WAS7

WebSphere®
Security

Designed to support a variety of Audit points such as
Authentication, Authorization, Principal/Credential mapping, User registry and
Identity management, Logouts,

A solid Auditing Strategy may help
by giving the organization the
critical information needed when a
penetration occurs.

WAS flat Audit File optionally
configured as virtually

15

WebSphere®
Web Services
Security

WebSphere®
Service
Integration Bus
(SIB)

tamper proof using signing
and encryption.

z/OS SMF Type 83 subtype 5.

§ Look for SMF Data Area Book to
be updates

§ The SMF Dump utility will be
updated to document SMF83
subtype 5.

The mainframe delivers an unprecedented security experience. Because the mainframe is built upon highly centralized, multi-use
--

“Operating systems generally called ‘secure’ rarely reach higher rankings than EAL4.” wikipedia.org *EAL (Evaluation Assurance Level) = International standard to define security requirements in computer systems.

Administrative Privilege

• WAS Administration offers a separation of privilege
model in which multiple roles with different administration
capabilities.
• In addition, WebSphere support different permissions at
finer grained level of resources

16

• Node, node group, server, cluster, application

• Authorization groups control permissions at a finer level
• They contain a set of resources that share a common

permission set
• They are assigned a set of users or groups that have been

granted administrative roles on those resources

TBD: move to app isolation slides

1074 – Security Application Architecture
Development and Integration Overview

Web Based Application
Authentication and AuthorizationAuthentication and Authorization

J2EE Web Authentication

• WAS Container is responsible for the
full aspects for Authentication.
• Identify who you are …
• No server side APIs or actions specified. Entirely
responsibility of container.

• Basic Authentication (e.g UserID/Password)

18

• Basic Authentication (e.g UserID/Password)
• Form based login -custom login page
• SSL mutual auth (e.g, Client Certificate)
• Customized Login using JAAS

§ Note that J2EE requires lazy authentication -users are not challenged until
they attempt to use a secured resource

Basic Authentication

Response: Status 401
Realm "IMWEBSRV_Administration"

1. User clicks on link to protected page

2. Server checks authority and rejects request

3. Browser pop-up window prompts user for

Request: GET http://server/restricted.html

19

3. Browser pop-up window prompts user for
userId and password

Request: GET http://server/restricted.html

4. Browser resends request with userid and password in request header

Form-based login

Login page

Post to
 j_security_check

Error page

Request for protected
resource

userid/password
OK?

no

User
Registry

WebWeb
containercontainer

20

Response

OK?
no

yesSend/Set encrypted
Login Token

Requests

Create
token

Process
requests

The Login Token is typically a LtpaToken cookie but not necessarily.

Certificate-based Authentication

Client

client hello
server hello

server certificate

Server

server hello done

certificate request

client certificate

Not encrypted

21

client key exchange

change cipher spec

finished

change cipher spec

finished

certificate verify

client certificate
Encrypted with server’s public key
Encrypted with client’s private key

Encrypted with
shared secret key

J2EE Security
Web Based Applications

• Authentication and Authorization is defined outside of the
application using the Application’s Deployment Descriptor.

• Located in the WAR file under web.xml
• Typically tools such as RAD or the AST are used to generate

this xml file.
• Define a Web Resource

• The URI or URI Patter to protect
• For static Http Method to protect such as GET or POST
• For dynamic Http method (Servlet/JSP) to protect such as GET, PUT, POST,

<web-app id="WebApp_ID">
<security-constraint>

<web-resource-collection>
<web-resource-name>foo</web-resource-name>

22

• For dynamic Http method (Servlet/JSP) to protect such as GET, PUT, POST,
DELETE, HEAD, OPTION, TRACE

• Define Authentication constraint
• List all the security roles needed to gain access to the Web Resource.
• A User must be will belong to at least one of these roles.

• Define User Data constraints: allows you to specify the required transport
guarantee that defines the communication between the client and the Web
application.
• None – no transport guarantee requires
• Integral – ensures data cannot be changed in transit – SSL used
• Confidential – ensures data cannot be viewed in transit – SSL used

• Define Login Config
• Specify Basic Authentication (userID/Password) or Form Based Login

• Define Security Roles
• List all the security roles that will be used by this application
• Must include roles that were listed in the Authenticated Constraint plus any
programmatic roles.

<web-resource-name>foo</web-resource-name>
<url-pattern>myServlet</url-pattern>
<http-method>GET</http-method>
<http-method>PUT</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>myRole1</role-name>
</auth-constraint>
<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>MyRealm</realm-name>

</login-config>
<security-role>

<role-name>myRole2</role-name>
</security-role>
<security-role>

<role-name>MyRole1</role-name>
</security-role>

</web-app>

Web Security General Settings

• Web authentication behavior
• Authentication only when the URI is
protected
• Authentication will only be performed for
URI and Auth Methods that are protected
via web.xml

• Optionally the application can be aware of
the authentication data when for

23

the authentication data when for
unprotected URIs.

• Authenticated when any URI is
accessed
• Regardless to the constraints define in
web.xml, all URI will be forced to be
authenticated.

J2EE Authorization Basics

• Principals
• Things that can be authenticated: users, servers, etc

• Roles
• An application centric name that represents a logical set of principals
• SSUsed in Permissions and Constraints to specify who can do what
• SSJust string names. E.g.: “managers,”“customers”

• Declarative Security
• "Declarative security refers to the means of expressing an application’s

security structure, including security roles, access control, and
authentication requirements in a form external to the application [code]." --

Customer

24

authentication requirements in a form external to the application [code]." --
J2EE 1.3 spec.
• Security Roles
• Method permissions
• RunAs information
• Permission to –URL patterns (can be more than one)

• HTTP Methods (GET, POST, DELETE, etc)
• Transport restrictions (none, integrity, confidential)
• RunAs

• Programmatic Security
• Allows for conditional checking of roles within the applications
• Ability for a program to get the current userID.
• For example, Manager role is required when depositing over $20,000
• Assignment and management of the role is handled outside of the

application

Teller

Manager

J2EE Role Mappings

EJB
Method

EJB
Method

EJB
MethodJack

Bob

Manager

Security
Binding

Security
Permissions

25

Actual
User/Groups

J2EE
Security
Roles

Enterprise Java
Bean (EJB)

Web Components

HTML,
GIFs,
etc.

Mary

Clients

Teller

Customer

Servlet

JSP

Usually by
Assembler or
Developer

Usually by
Deployer

This page shows the actual process. The Developer (or the Assembler) will define the J2EE Security roles and specify permissions of what application artifacts can be accessed by these roles. The deployer then binds the J2EE Security roles to the actual users or groups.

J2EE Security Role mapping

• J2EE roles are mapped to either
user(s) or group(s) or both.

• Can be mapped during application
deployment or changed after
deployment.

• During the mapping process,

26

• During the mapping process,
WebSphere allows user and group
patter searches against the
configured User Account Repository
(User Registry).

• If using zOS SAF authorization,
these mappings are handled within
RACF or equivalent product.

WAS for z/OS
SAF Authorization

• You can either use WebSphere Authorization or SAF
Authorization to manage your Role to User Mappings.

• WebSphere Authorization, the administrator roles and
application roles are managed within WAS using the WAS
Administration console and the deployment descriptor.

• WebSphere SAF authorization, the administrator roles and
application roles are managed within SAF. Any
Administration and/or Application roles configured via the
WAS Administration console will be ignored.

Web Module
Servlets,
JSPs,
HTMLs

EJB Module

EJBs

27

WAS Administration console will be ignored.
• In addition, the application deployment information for
“Everyone”, “All Authenticated”, and “User/group to role”
attributes are ignored and managed within the SAF
Authorization Management facilities.

• SAF manages roles using the EJBROLE SAF Class and the
SAF Profile represents the role.
• RDEFINE EJBROLE (safPrefix.)myrole UACC(NONE)
• PERMIT (safPrefix.)myrole CLASS(EJBROLE) ID(User1)

ACCESS(READ)

J2EE
Security
Roles

Users
Groups

Binding

SAF Authorization can be Enabled using GUI

• From the main
Security panel >>
External Authorization
Provider panel, you
have the options for
• WebSphere

28

• WebSphere
Authorization

• JACC Provider
• SAF authorization

• Note, on this screen, you
have a link for SAF
authorization options.

z/OS Security Domain Name V61
z/OS SAF Prefix V7 and beyond

• optionalSecurityDomainName was renamed to SAF Prefix in
WAS7 to remove any confusion with the Multiple Security Domain
Feature delivered in V7.

• SAF Prefix is established during the installation task using the z/OS
customization Dialogs.

• The specification of a security domain prefix affects the specific
EJBROLE profiles.

29

EJBROLE profiles.
• When enabled, the EJBROLE profile role can be scoped down to a
cell level. For example, I can have a different User have
administrator role access to different cells
• Production Cell might have
• RDEFINE EJBROLE (PRODCELL.administrator UACC(NONE)
• PERMIT (PRODCELL. administrator CLASS(EJBROLE) ID(User1)

ACCESS(READ)

• Test Cell might have
• RDEFINE EJBROLE (TESTCELL.administrator UACC(NONE)
• PERMIT (TESTCELL.administrator CLASS(EJBROLE) ID(User2)

ACCESS(READ)

WAS for z/OS
Specific GUI enablement's

• On the SAF
Authorization Options
you have the ability to:
• Specify the
unauthenticated User ID.

30

unauthenticated User ID.
• Specify a SAF profile
mapper.

• Enable SAF Delegation.
• SAF logging options
• Specify SAF Prefix
(WAS7)

Web Applications Programmatic APIs

• isUserInRole (String role-name): Returns true if the remote user is granted the
specified security role. Returns false, if the remote user is not granted the
specified role, or no user is authenticated

• getUserPrincipal(): Returns the java.security.Principal object containing the
remote user name

• getRemoteUser(): Returns the user name the client used for authentication
(String)

31

Example:

public void doGet(HttpServletRequest request, HttpServletResponse response) {
// to get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUser = principal.getName();
// to get remote user using getRemoteUser()
remoteUser = request.getRemoteUser();
// to check if remote user is granted Manager role, using isUserInRole
boolean isMgr = request.isUserInRole("Manager");

}

J2EE Security defines three APIs that can be used by the Web developer. These are
similar to the APIs used by EJB developer, but not exactly the same.
The IsUserInRole IsUserInRole() method is used to determine if the authenticated caller is in a specific
Role defined by the application. This allows the developer to make decisions where they
might want a certain part of the code to be allowed to execute only for a user in a specific
Role.
The getUserPrincipal() getUserPrincipal() method is used to return the Principal of the authenticated call method is used to return the Principal of the authenticated caller. er.
The getRemoteUserl() getRemoteUserl() method is used to return the remote web client user. method is used to return the remote web client user.
The example on this page shows how the developer can use these The example on this page shows how the developer can use these APIs.

J2EE Security: Servlet, JSP Role Based Authorization

32

Declarative J2EE Roles

Programmatic J2EE Roles

The goal is for a developer or an assembler to specify who can access the methods within
A Web component.
In some cases, the developer might not be the same as the Assembler of the application.
A developer might not know the actual Security roles that may be defined later by an
assembler. In that case, the developer can use an internal security role name when
making programmatic API calls to check for security, as shown in step 1. It will be up to
the assembler to tie the internal role name to the actual security role by defining a security
role reference, as shown in step 3.
In the example, “Supervisor” is the internal local name. Later, the assembler will have to
map the internal name to the actual Role defined by the assembler.
In the life cycle of the application, step 2 shows an assembler defining a set of J2EE
Security Roles for the application
Now that the real Security Roles have been defined, the assembler must map any internal
Role name used by the developer to the actual Security Role reference, as shown in step
3.
The Assembler can assign Web resource permissions, as shown in step 4. This is
associating the methods to the Security roles. Once done, any user or group that fits to the
Security role will have permission to access the method. You can use wild cards to specify
multiple methods.
The application is now ready for deployment into an Application Server. During
deployment, as shown in step 5, the System Administrator can bind the security roles to
the actual users/groups that are in the Security User Registry for the Application Server.

Application Security Tasks and Roles

Task Role Tools Files Chg

1
Specific J2EE Programmatic
Java API in code

Developer RAD or any IDE Java Code

2
Define J2EE Security Roles Assembler RAD, AST application.xml

3
Map Developer J2EE roles to a Assembler RAD, AST IBM binding files

33

3
Map Developer J2EE roles to a
bind-able referenced role

Assembler RAD, AST IBM binding files
ibm-web-bnd.xmi

4
Specify the web constraints and
declarative J2EE roles

Assembler RAD, AST web.xml

5
Map J2EE roles references from
step 3 to users, groups, or both

Assembler or
RACF Admin

WAS, RAD, AST Ibm-appication-
bnd.xml, JACC
provider, or SAF

This table provides a summary of different tasks associated with J2EE Security Roles, the
role that typically perform the task, the tools used to performs the task and the files that
are modified.

1074 – Security Application Architecture
Development and Integration Overview

EJB Application
Authentication and AuthorizationAuthentication and Authorization

J2EE EJB Authentication

• Similar to Web Applications, the WAS EJB
Container is responsible for the full aspects for
Authentication.

• Uses Common Secure Interoperability Version 2 (CSiV2)
• Defined by Object Management Group (OMG) standard to provide open, secure

35

• Defined by Object Management Group (OMG) standard to provide open, secure
interoperability common framework across J2EE servers

• CSIv2 Protocol facilitates interoperability by serving as the higher-level protocol under
which secure transports (SSL/TLS) can be unified

• Distinguishes between network level (transport layer) and application level (message layer)
authentication
• Transport layer supports PKI client certificates authentication using SSL
• Message layer supports the exchange of security attributes
• Standard provided for several token types including basic authentication, asserted

identities, Kerberos, etc
• WAS of course adds LTPA tokens as an additional type

CSIv2 Overview

• CSIv2 defines the Security Attribute Service (SAS) that enables interoperable authentication,
delegation and privileges
• CSIv2 SAS supports SSL and interoperability across J2EE vendors (starting with J2EE 1.3

specification)
• Provides 3 layers of authentication, as shown in the table below:

36

WAS on Windows

JAAS
Subject

Transport layer
SSL Mutual Authentication

Message layer
Userid/password or authenticated token

Attribute layer
Identity token for identity assertion

WAS on z/OS

JAAS
Subject

CSIv2 enables interoperable authentication, delegation, and privileges and is intended for
use in environments where SSL and TLS is used at the transport layer to provide message
protection and server-to-client authentication. The Security Attribute Service in CSIv2 is
totally different from IBM SAS authentication protocol

J2EE Security
Enterprise Java Bean Based Applications

• Role Authorization and the runAs identity can be defined outside of the
application using the Application’s Deployment Descriptor or defined
using annotations with in the Java Source code.

• Located in the EJB jar under ejb-jar.xml
• Typically tools such as RAD or the AST are used to generate this xml

file.

• Define Security Roles
• List all the security roles that will be used by this application

<ejb-jar id="ejb-jar_ID">

37

• List all the security roles that will be used by this application
• Must include roles that were listed in the Authenticated Constraint
plus any programmatic roles.

• Define Security Identity
• Specifies the security identity to be used to invoke methods in a
particular EJB

• Options
• Run as the caller identity
• Run as a role and then the role is associated with an identity.
• Run as a specified Identity
• Run using the server identity

….
<assembly-descriptor>

<security-role>
<role-name>myRole</role-name>

</security-role>
<method-permission>

<role-name>myRole</role-name>
<method>

<ejb-name>myEJB</ejb-name>
<method-intf>Home</method-intf>
<method-name>*</method-name>

</method>
</method-permission>

</assembly-descriptor>
</ejb-jar>

Changing Identity: “Run-As” Option

• EJB methods have the ability to run using different identity
• There are several different “Run-As” identities that you can choose from

• Run-As specification applies to all the methods of the EJB
• IBM extension, allow for specify “Run-As” options for different methods within the same EJB

Run As Options Description

38

Caller Run as the identity of the caller subject

Specific Identity Run as a the specified users

Role Run as the role that mapped to a specified Identity

Server Identity Run as the Server Identity (but be careful Authorization using
Server Autogen ID not supported)

The Run-As option is a way to change the identity of the caller from an EJB when calling a
downstream EJB.
An example is where a client cannot directly call a downstream EJB, but can call an
upstream EJB, which can call a downstream EJB by changing its identity.
There are three Run as options, as shown in the table. The downstream EJB can be called
as the same identity as the original client identity, or can be called as the Server identity,
which is the user under which WebSphere Application Server is running. The last option is
to run as another specified role.
The Server Identity Run as option is an IBM extension, carried forward from v4 and V5.

WebSphere Role Delegation

• WebSphere offers a Delegation to
User Identity be represented as a
J2EE role.

• For example, an application can be
established to run with RunAs Role
of rolea. rolea can be mapped as

39

of rolea. rolea can be mapped as
Usera. In this case, WebSphere will
setup the identity context as Usera.
RunAs Role is defined in the
Deployment Descriptor.

• For example
• The Deployer will deploy app1 and set
“RunAS role” to role1.

• In the WebSphere Console, you can
map the rule to a specific userID and
password.

WAS for z/OS SAF Delegation

• SAF Delegation will use the specified J2EE role
name to determine the Thread Identity and will
synchronize with the Userid specified in the SAF
EJBROLE profile’s APPLDATA.

• Basically this is similar to the rest of the WebSphere
family except the Userid will be obtained from SAF. .

• For example, the customer would define to SAF
using the RACF command RDEFINE EJBROLE

40

using the RACF command RDEFINE EJBROLE
myRole UACC(NONE) APPLDATA(‘myUserID’) ID
specified must be a valid SAF ID.

• Inherently, this requires SAF Authorization to be
enabled.

• Security configuration must have SAF Delegation
enabled.
• GUI – Secure administration, applications, and

infrastructure > External authorization providers > SAF
authorization options > SAF Delegation.

EJB Leverages RMI/IIOP Security using
CSIV2 – inbound communications

• Identity Assertion – When enabled,
the server permits an identity that was
asserted from an upstream server. It
requires the Trusted Identities to
contain upstream serverID that you
trust to assert.

• Message Layer authentication –

41

• Message Layer authentication –
Specifies if authentication is required,
supported (optional), or none. Also
need to specify the authentication
types supported ie LTPA, Kerberos, or
basic Authentication.

• Client Certificate Authentication –
Specifies required, Supported or none.

• Transport – Specify if SSL is
required, supported (optional) or none.

EJB Leverages RMI/IIOP Security using
CSIV2 – outbound communications

• Identity Assertion – The Server will
perform an identity assertion going
outbound. Either a ServerID or some
specified userid/password can be
used.

• Message Layer authentication –
Specifies if authentication is required,

42

Specifies if authentication is required,
supported (optional), or none. Also
need to specify the authentication
types supported ie LTPA, Kerberos, or
basic Authentication.

• Client Certificate Authentication –
Specifies required, Supported or none.

• Transport – Specify if SSL is required,
supported (optional) or none.

Example:
Local EJB on Portal runAS Role
Remote EJB on WAS runAs Caller

• Portal CSIv2 config
• Inbound/Outbound

• Basic Authentication none
• Client Certificate Required
• Identity Assertion enabled
• SSL required

• Remote WAS
• Inbound/Outbound

43

• Inbound/Outbound
• Basic Authentication none
• Client Certificate Required
• Identity Assertion enabled
• SSL required

• Results
• Logon to Portal using WTCUSER1
• Local EJB will run as WTCAPP1
• Remote EJB will also run as

WTCAPP1

J2EE Authorization Basics

• Principals
• Things that can be authenticated: users, servers, etc

• Roles
• An application centric name that represents a logical set of principals
• SSUsed in Permissions and Constraints to specify who can do what
• SSJust string names. E.g.: “managers,”“customers”

• Declarative Security
• "Declarative security refers to the means of expressing an application’s

security structure, including security roles, access control, and
authentication requirements in a form external to the application [code]."

Customer

44

authentication requirements in a form external to the application [code]."
--J2EE 1.3 spec.
• Security Roles
• Method permissions
• RunAs information
• Permission to –URL patterns (can be more than one)

• HTTP Methods (GET, POST, DELETE, etc)
• Transport restrictions (none, integrity, confidential)
• RunAs

• Programmatic Security
• Allows for conditional checking of roles within the applications
• Ability for a program to get the current userID.
• For example, Manager role is required when depositing over $20,000
• Assignment and management of the role is handled outside of the

application

Teller

Manager

J2EE Role Mappings

EJB
Method

EJB
Method

EJB
MethodJack

Bob

Manager

Security
Binding

Security
Permissions

45

Actual
User/Groups

J2EE
Security
Roles

Enterprise Java
Bean (EJB)

Web Components

HTML,
GIFs,
etc.

Mary

Clients

Teller

Customer

Servlet

JSP

Usually by
Assembler or
Developer

Usually by
Deployer

This page shows the actual process. The Developer (or the Assembler) will define the J2EE Security roles and specify permissions of what application artifacts can be accessed by these roles. The deployer then binds the J2EE Security roles to the actual users or groups.

J2EE Security Role mapping

• J2EE roles are mapped to either
user or group or both.

• Can be mapped during
application deployment or
changed after deployment.

• During the mapping process,

46

• During the mapping process,
WebSphere allows user and
group patter searches against
the configured User Account
Repository (User Registry).

• As discussed before, WAS for
z/OS customer has the option to
use SAF Authorization instead.

EJB Applications Programmatic APIs

• IsCallerInRole (String role-name)
• Returns true if the bean caller is granted the specified security role
• If the caller is not granted the specified role, or if the caller is not authenticated,

it returns false
• If the specified role is granted Everyone access, it always returns true
• Must have security role reference defined in the deployment descriptor

• getCallerPrincipal():
• Returns the java.security.Principal object containing the bean caller name

47

•

• If the caller is not authenticated, it returns a principal containing
UNAUTHENTICATED name

Example:
public void myEJBmethod() {

…
// to get bean's caller using getCallerPrincipal()
java.security.Principal principal = context.getCallerPrincipal();
String callerId= principal.getName();
// to check if bean's caller is granted Mgr role
boolean isMgr = context.isCallerInRole("Mgr");
…

}

J2EE Security defines two APIs that can be used by the EJB developer:
The IsCallerInRole IsCallerInRole() method is used to determine if the authenticated caller is in a
specific Role defined by the application. This allows the developer to make decisions
where they might want a certain part of the code to be allowed to execute only for a user
in a specific Role.
The getCallerPrincipal() getCallerPrincipal() method is used to return the authenticated caller. method is used to return the authenticated caller.
The example provides how the developer could use these APIs. The example provides how the developer could use these APIs.

J2EE
EJB Security Annotation New WAS7!

• Beginning with WAS7 and EE5, EJB authorization can be specified in
the Java Source Files instead of using the deployment Descriptor.

• Ddd
• @PermitAll – The given method or all the methods for the EJB are
accessible by everyone.

• @DenyAll – The given method for the EJB can not be accessible

48

• @DenyAll – The given method for the EJB can not be accessible
by anyone.

• @RolesAllowed – The given method or all the methods for the
EJB can be accessed by users associated with the list of roles.

• @DeclareRoles – To define all the roles for a given EJB.
• @RunAs – Specifies the user Identity to be used.

J2EE Security: EJB Role Based Authorization

49

The goal is for a developer or an assembler to specify who can access the methods within
an EJB.
In some cases, the developer might not be the same as the Assembler of the application.
A developer might not know the actual Security roles that may be defined later by an
assembler. In that case, the developer can use an internal security role name when
making programmatic API calls to check for security, as shown in step 1. It will be up to
the assembler to tie the internal role name to the actual security role by defining a security
role reference, as shown in step 3.
In the example, “Supervisor” is the internal local name. Later, the assembler will have to
map the internal name to the actual Role defined by the assembler.
In the life cycle of the application, step 2 shows an assembler defining a set of J2EE
Security Roles for the application
Now that the real Security Roles have been defined, the assembler must map any internal
Role name used by the developer to the actual Security Role reference, as shown in step
3.
The Assembler can assign EJB method permissions, as shown in step 4. This is
associating the methods to the Security roles. Once done, any user or group that fits to the
Security role will have permission to access the method. You can use wild cards to specify
multiple methods.
The application is now ready for deployment into an Application Server. During
deployment, as shown in step 5, the System Administrator can bind the security roles to
the actual users/groups that are in the Security User Registry for the Application Server.

Application Security Tasks and Roles

Task Role Tools Files Chg

1
Specific J2EE Programmatic
Java API in code

Developer RAD or any IDE Java Code

2
Define J2EE Security Roles Assembler RAD, AST application.xml

3
Map Developer J2EE roles to a Assembler RAD, AST IBM binding files

50

3
Map Developer J2EE roles to a
bind-able referenced role

Assembler RAD, AST IBM binding files
ibm-ejb-bnd.xmi

4
Specify the declarative J2EE
roles

Assembler RAD, AST ejb-jar.xml

5
Map J2EE roles references from
step 3 to users, groups, or both

Assembler or
RACF Admin

WAS, RAD, AST Ibm-appication-
bnd.xml, JACC
provider, or SAF

This table provides a summary of different tasks associated with J2EE Security Roles, the
role that typically perform the task, the tools used to performs the task and the files that
are modified.

1074 – Security Application Architecture
Development and Integration Overview

Java 2 Security

Java 2 Security

• Java 2 security provides code level access control
• Can code call “this” Java API
• Only provides code authorization, no user authorization to code.

• Do you “really” need Java 2 Security?
• Most likely not
• Performance penalty
• High performance penalty prior to WAS6.1

52

• High performance penalty prior to WAS6.1
• WAS 6.1.0.9 and above, performance improved a lot when the read
only subject is enabled, but the more program permissions added to
logic, the worse the performance.

• Very difficult to manage
• Provides no value in improvement of security with respect to external
attacks.

• Recommendation
• Most customers do not use Java 2 Security
• Do not use unless you “really” need it

1074 – Security Application Architecture
Development and Integration Overview

Web Services Application
AuthenticationAuthentication

Web Services security protocol layers

• The Transport layer:
HTTP, RMI/IIOP,
WebSphere MQ, and
so on typically carry
authentication

• Web services messaging relies on two protocol layers. Security can be
implemented at each of these layers:

54

authentication
information in headers,
with optional additional
security provided by
encapsulation in the
SSL/TLS protocol.

• The SOAP or Message layer: The WS-Security specifications indicate how
SOAP XML messages can carry security assertions and contexts.

Because TLS establishes security context which is meaningful only to the two physical
endpoints of a connection, it does not fully meet typical Web services end-to-end security
requirements. For example, an HTTP session can be protected by SSL/TLS. However, the
security context resulting from the partners’ mutual authentication, and the negotiation of
cryptographic parameters, cannot be propagated from the end user to the final service if
intermediary services have to be traversed.

Web Services Transport layer security

• SSL is the most popular way to encrypt communication between
business partners over the Internet.

• It simply creates a secure pipeline between two nodes and encrypts
all traffic flowing between the nodes.
• SSL provides a straightforward way to provide confidentiality.
• It also includes a built-in communication integrity check.
• Connection layer authentication is achieved by the client always

authenticating the server, and optimally being authenticated by the server,
through the exchange of X.509 certificates.

• HTTPS (SSL over HTTP) has the following advantages:

55

• HTTPS (SSL over HTTP) has the following advantages:
• It can be used to provide a very fast and secure transport for Web services.
• It provides authentication through either HTTP Basic Authentication or a

client X.509 certificate.
• It provides integrity between the client and server by using asymmetric key

cryptography to establish authenticity of server and client and to securely
share a secret key.

• It provides confidentiality between the client and server through efficient
shared key cryptography.

• It has good support for a broad array of hardware accelerators.
• It is mature and similarly implemented by most vendors, and therefore, is

subject to few interoperability problems.
• JMS: SSL can be used between messaging engines.

For Example: Web services transport security
confidentiality via SSL scenario

56

Web Services Message level security

• WS-Security provides a general purpose mechanism
for associating security tokens with messages.
• Typical tokens in WebSphere-based Web services are

user name and password, X.509 certificates, and LTPA
tokens.

• WS-Security supports the following authentication
mechanisms via the insertion of a security token:
• Basic Authentication: The security token includes the

user name and password information, and is generated
as <wsse:UsernameToken> with <wsse:Username> and
<wsse:Password>.

57

<wsse:Password>.
• Signature: The security token includes the X.509

certificate of the signer of the data and is generated as
<ds:Signature> with <wsse:BinarySecurityToken>.

• ID assertion: ID assertion includes a user name only,
since the identity is asserted, and is generated as
<wsse:UsernameToken> with <wsse:Username>.

• Custom: This mechanism includes a custom-defined
token.

• LTPA: Use of an LTPA token is a WebSphere-specific
customer token, generating a <wsse:UsernameToken>
with <wsse:Username>

For Example: Web service message security
authentication scenario

58

Web Services Decision Tree

Can use
Transport Level

Can use WS-
Security

Ability to encrypt the entire message Yes Yes

Ability to only encrypt a portion of the message No Yes

Ability to handle 1 identity Yes Yes

59

Ability to handle authentication/Assertion of multiple identities No Yes

Ability to handle non-repudiation ie: show origin (authentication and
content (integrity) of the message

No Yes

Non SOAP message Yes No

Identity is in the transport header Yes No

Identity is in the SOAP message No Yes

SOAP message being passed in multiple transport types No Yes

WS-Security can easily be configured using WAS7 Policy
Set feature

• A policy set is a collection of
policies.

• A policy is a definition of a
Quality of Service (QoS).

• Simplifies the QoS configuration
model
• Central repository of reusable
policy sets

60

policy sets
• Default policy sets for common
configurations

• Policy sets can now be applied
dynamically at runtime as well
as at development time via RAD.

JAX-RBC VS JAX-WS
• Some aspects of JAX-WS 2.0 are merely evolutionary to JAX-RPC 1.1, other parts are revolutionary
• Main Programming Differences

• Data binding between Java and XML is most notable changes
• JAX-WS leverages heavily on the use of Annotations.
• JAX-WS added SOAP 1.2 standard. Not a big deal.
• Removes the Service Endpoint Interface to using a more POJO class style
• Client Port Lookup changed slightly. Not a big deal.
• JAX-WS introduces RESTful Web Services which is the successor for SOAP based Web Services.
• JAX-WS added support for MTOM and SAAJ which allows for optimized transmission of binary data

useful for sending attachment data.
• Ability to support a asynchronous operations

• Recommendations

61

• Recommendations
• Just getting started with Web Services, we strongly encourage you to move towards JAX-WS
• Already invested in JAX-RBC, consider a migration to JAX-WS if you need any of the following:

• use message-oriented API
• MTOM, SOAP 1.2
• better support for XML schema
• asynchronous programming model

• Good Resources
• http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc

/info/exp/ae/rwbs_migjaxrpc2jaxws.html
• http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc.html
• http://www.ibm.com/developerworks/webservices/library/ws-tip-jaxwsrpc2.html

1074 – Security Application Architecture
Development and Integration Overview

Additional Features

WebSphere User Registry

• WebSphere Security requires a User Registry to be configured.
• Used during Authentication process to verify User Identity and

construct the User’s group information as part of the Subject
• Used by WebSphere Authorization Mapping in order to map J2EE

roles or Administrator roles to User or Groups.
• User Registry - similar to dWAS, your options for WAS61
• LocalOS UR
• LDAP UR

63

• LDAP UR
• Custom UR
• Federated Repository (VMM)

• z/OS Local Registry uses SAF plus…
• Can use the mixed case password option for RACF.
• Must use z/OS Version 1.7 or higher
• local operating system registry
• mixed case is turn on by using the SETROPTS

PASSWORD(MIXEDCASE) command.
• Can support the z/OS 1.9 Pass Phase
• Requires z/OS 1.9
• Requires WAS6.1.0.15

SAML Support as of WAS 7.0.0.7

• OASIS Web Service Security SAML Token Profile 1.1
• SAML Assertion V1.1 and V2.0

• Configurable via policy sets
• Targets JAX-WS
• Leverages Custom Token Support

• API allowing customer to create and consume SAML Assertion

64

• API allowing customer to create and consume SAML Assertion
• Utility available for building customer SSO solutions
independent from Web Services.

• Does not support using SAMLToken in WSS API
• Supports External STS
• We tested TFIM and Microsoft Geneva
• No STS shipped with Product
• Provide API to request and validate SAML assertion via WS-
Trust V1.2 and V1.3 protocol

RACF for z/OS and WebSphere for Distributed Systems

• Technology preview… IBM RACF Remote Authorization provider
• Available via the z/OS Download site
• http://www-03.ibm.com/systems/z/os/zos/downloads/

• Available to z/OS RACF licensed customers
• Enables WebSphere authorization requests to be processed by z/OS RACF

• Centralized Audit and Authorization
• Utilizes WebSphere “plug points”

• Java Authorization Contract for Containers (JACC) for Authorization

65

• Java Authorization Contract for Containers (JACC) for Authorization
• Trust Association Interceptor (TAI++)

• “Pluggable" module whose responsibilities are:
• Validation of trust with the perimeter authentication service – such as

the WebSeal reverse proxy
• Extraction of credential information from the request

• Subsequently used by authorization providers

Provides ability to use RACF services to centralize access control policy and auditing on
z/OS, while leveraging ITAMeb and WebSeal for authentication, edge of the network coarse
grain access control and reverse proxy capabilities.

WAS for z/OS and z/Linux
Cryptography
• The z/OS Daemon Address space uses z/OS system SSL
• WebSphere DMGR, Node Agent, and Application Server leverages
Java Cryptograghy Extensions (JCE) and Java Secure Socket
Extensions (JSSE).

• Supports HW Crypto Accelerator and Secure Key
• Secure Key meaning Crypto Keys are physically stored in the HW.
• Accelerate meaning Crypto Operations execute on the HW card.
Secure Key is not required to achieve Accelerator.

66

Secure Key is not required to achieve Accelerator.
• z/OS uses IBMJCECCA provider
• z/Linux uses PKCS11 provider

• Note: For all other platforms, JDK only supports Secure Key for a
number of 3rd party card provider. For more information on what
supported, see
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/pkcs11implDocs/IB
MPKCS11SupportList.html

WAS for z/OS
Sync to Thread Option

• The Operating System User Identity is synchronized with
the WAS Subject or delegated RunAs identity in the servlet
or EJB thread.

• Any access outside of the WAS container such as
accessing a file, the thread idenity will be assign the ID of
the SAF user instead of the Identity of the server.

• To activate this function you must have all of the following
set:
• Using SAF User Registry (LocalOS) or Identity Mapping.
• Application must include within its deployment descriptor

67

• Application must include within its deployment descriptor
an env-entry of
com.ibm.websphere.security.SyncToOSThread set to
true.

• Security configuration must have Sync to Thread
enabled
• GUI – Secure administration, applications, and

infrastructure > z/OS security options > Enable application
server and z/OS thread identity synchronization.

• New in Version 6.1! SAF Authorized to use Sync to
Thread
• CR must have CONTROL ACCESS to SAF resource FACILITY

BBO.SYNC.<cell short name>.<cluster short name>
• OR CR must have READ ACCESS to SAF resource FACILITY

BBO.SYNC.<cell short name>.<cluster short name> and SR must
have READ ACCESS to the SAF resource of SURROGATE
BBO.SYNC.<authenticated User ID>

WAS for z/OS
Sync to Thread Example

• A simple test application attempts to access a UNIX file named
/tmp/test.txt.

• For testing purposes, we set file /tmp/test.txt UNIX file permission so
both the WAS Servant User CBSYMSR1 and USER3 do NOT have
access.

• Lets see what our security violation messages will render.
• When running with Synch to Thread DISABLED
•

68

• ICH408I USER(CBSYMSR1) GROUP(CBCFG1) NAME(WAS APPSVR SR) /tmp/test.txt
CL(FSOBJ) ID(01E6E2C8C6E2F800010300003C3C0000) INSUFFICIENT AUTHORITY TO OPEN
ACCESS INTENT(R--) ACCESS ALLOWED(OTHER ---) EFFECTIVE UID(0000002113)
EFFECTIVE GID(0000002300)

• Shows that User CBSYMSR1 attempted to access file /tmp/test.txt
• When running with Synch to Thread ENABLED
• ICH408I USER(USER3) GROUP(GROUP1) NAME(CB390 USER3) /tmp/test.txt CL(FSOBJ

) FID(01E6E2C8C6E2F800010300003C3C0000) INSUFFICIENT AUTHORITY TO OPEN ACCESS
INTENT(R--) ACCESS ALLOWED(OTHER ---) EFFECTIVE UID(0000033114) EFFECTIVE
GID(0000033333)

• Shows that User USER3 attempted to access file /tmp/test.txt

WAS for z/OS
Unauthenticated User

• z/OS requires that all Users have some kind of
identity.

• In particular, if we enable Sync to Thread for an
unauthenticated WAS User, we need to use some
Identity that can be synced to the operating system.

• In zWAS, the Unauthenticated Users are represented
as a default ID for non-authenticated Users.

• Default ID must be defined in SAF based product.
This ID is usually setup with limited access to z/OS

69

This ID is usually setup with limited access to z/OS
resources.

• The restricted ID will use a default SAF ID of
WSGUEST or ID specified in the configuration.

• If SAF authorization is enabled, zWAS administrator
can specify the default ID to be used.
• During the installation dialog process
• GUI – Secure administration, applications, and

infrastructure > External authorization providers > SAF
authorization options > Unauthenticated User ID.

WAS for z/OS
SAF Profile Mapper
• RACF has a restriction of 240 characters for SAF profiles which means a potential
issue for role names over 240 characters. Future they will remove restriction.

• In addition, SAF profiles do not support profile names containing any white space
or extended code page characters.

• In order to get around this restriction, zWAS will allow the customers to develop a
SAF EJB Role Mapper Class which will simply map J2EE roles to SAF EJBRole
Profiles.

• Inherently, this requires SAF Authorization to be enabled.

70

• Inherently, this requires SAF Authorization to be enabled.
• Code a SAF Profile Mapper Class

public class SAFRoleMapperImpl1 {
String domainPrefix = null;
public void initialize(Properties context) {

domainPrefix = context.get(SAFRoleMapper.DOMAIN_NAME); }
public String getProfileNameFromRole(String app, String role) {

String profile = app + “.” + role;
If (domainPrefix != null) {

profile = domainPrefix + “.” + profile; }
profile = profile.replaceAll(“\\%”, “#”);
profile = profile.replaceAll(“\\&”, “#”);
profile = profile.replaceAll(“*”, “#”);
profile = profile.replaceAll(“\\s”,“#”); return profile; } }

WAS for z/OS
Trusted Applications

• In general, if you are using any aspects of the SAF
Security (LocalOS UR, SAF Authorization, Sync to
Thread, etc) we recommend that customers to enable
Trusted Application

• This feature is critical to z/OS System Integrity
Statement which we will see covered later in this
presentation.

71

presentation.
• To enable Trusted Application, the Server must have
SAF Access of READ to CLASS FACILITY and profile
of BBO.TRUSTEDAPPS.<cell>.<cluster>

• For example, a RACO/ACEE can not be created for
asserted identity credential (no password) unless the
Trusted Applications is enabled

1074 – Security Application Architecture
Development and Integration Overview

DB2

Introducing DB2 security objects

• DB2 TRUSTED CONTEXT

• A new object used to control users
and applications access to DB2

73

and applications access to DB2

• DB2 ROLE

• A new object that can be granted
privileges or own objects

• Application attributes are verified before associating it
with a trusted context such as the system user id and
where the request originated

• Allows a unique set of privileges to be associated with

Associating an application with a trusted context

74

• Allows a unique set of privileges to be associated with
an application preventing the misuse of privileges
when not accessing through the trusted context

• Controls what end users can be associated with an
application eliminating the need to manage RACF user
credential from trusted servers

CREATE TRUSTED CONTEXT

• Provide a system ID and connection
attributes necessary to associate a trusted
context to a connection

IP Address or host name of remote application
JOBNAME of local application
Encryption requirements
Enabled or disabled by administrator

• Provide optional list of users can be

75

• Provide optional list of users can be
associated with the trusted connection

• Provide authentication requirements for
users in list of users

• Provide optional ROLE to control application
privileges

• Provide optional RACF SERVAUTH profile to
control access by network zones

• Provide optional SECURITY LABEL can be
associated with the connection

Trusted Context Example

CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION
USING SYSTEM AUTHID WASADMIN
WITH USE FOR SAM, JOE, PETE, MARY

76

WITH USE FOR SAM, JOE, PETE, MARY
WITHOUT AUTHENTICATION
ATTRIBUTES (ADDRESS '9.67.40.219')
ENCRYPTION HIGH
SECURITY LABEL SAFEZONE
ENABLE;

Establishing a Trusted Connection

• An application can be
associated with a trusted
context using:

►DDF
DB2 Connect

77

►DDF

►RRS Attach

►DSN ASUSER

►BATCH DB2

DSN

RRSAF

UserID
Cache

Client Exploitation

v New CLI and JDBC Client Driver APIs

► JDBC example:

Cookie=getDB2TrustedPooledConnection(authid, pwd, …);

78

getDB2Connection(Cookie, newUser, newPassword, …);

v Websphere Application Server
► Database property:

propagateClientIdentityUsingTrustedContext

Special Trusted Context Privileges

• Once an application is associated with a trusted context, it
can:

►Acquire additional privileges through a ROLE

►Acquire a RACF security label

79

►Acquire a RACF security label

►Efficiently switch user associated with connection on
transaction boundary

►Allow objects created to be owned by the ROLE

CREATE ROLE

• Creates a database entity that can have
one or more privileges granted to it

• Role associated with a DB2 process when
a connection is associated with a trusted
context

80

context
• Means to acquire context specific

privileges
• Can own DB2 objects when trusted

context is defined with “Role as Object
Owner”

Role Example

CREATE ROLE CTXROLE;

CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION
USING SYSTEM AUTHID ADMIN1
DEFAULT ROLE CTXROLE

81

DEFAULT ROLE CTXROLE
WITH ROLE AS OBJECT OWNER
ATTRIBUTES(ADDRESS'9.67.40.219')
ENABLE;

GRANT DBADM TO CTXROLE;

Best Practices using new features

• Secure an existing
Application Server

• Secure DBA Activities
• Allow DBA to run as

82

• Allow DBA to run as
another USER

• Allow remote IDs to be
included in z/OS audit
logs

DB2 Security Redbook

SG24-6480

•Multilevel security
•Trusted Context
•Roles

83

•Roles

1074 – Security Application Architecture
Development and Integration Overview

Final Word

Visit Our Website

• How to harden your environment
• Hints and Tips
• FAQ
• Reference Material

http://www.ibm.com/developerworks/websphere/zones/was/security/

85

• Reference Material
• Security Bulletin
• Blog and discussion

WebSphere Application Server Sessions
Session
Number

Day Time Title Speaker

1076 Monday 11:00 WAS z/OS – Architecting Mixed-Platform Cells Don Bagwell

1179 Monday 1:30 WAS z/OS – Java Out Of Memory (OOM) Analysis Hands-on Lab Michael Stephen & Ken
Irwin

1065 Monday 4:30 WebSphere Application Server Latest Status Dave Follis

1089 Tuesday 11:00 WebSphere for z/OS Migration – Walk Through, Warnings and
Feedback

Mike Stephen and Mickey
Scott

1107 Tuesday 3:00 WebSphere for z/OS – I am no longer a dummy but… Don Bagwell

86

1064 Tuesday 4:30 Which platform should I use for my WebSphere Application? Mickey Scott

1147 Wednesday 3:00 Introduction to using IBM Support Assistant for WebSphere
Application Server for z/OS

John Hutchinson

1143 Wednesday 4:30 Avoiding the potholes on the WebSphere Application Server for
z/OS Onramp

Mike Loos

1172 Wednesday 6:00 WAS z/OS – Making Use of Optimized Local Adapters Don Bagwell

1074 Thursday 8:00 Security Architecture – How does WebSphere play? Bill O’Donnell

1075 Thursday 9:30 WebSphere Application Server Version 7 Management Strategies Paul Houde

1077 Thursday 1:30 WAS z/OS – High Availability Architectural Considerations Don Bagwell

87

