
What is New in Enterprise PL/I 4.1
and
z/OS XL C/C++ V1R12

Peter Elderon (elderon@us.ibm.com)
Chwan-Hang Lee (chwan@ca.ibm.com)
IBM Corporation

August 2, 2010

2

• IBM® zEnterprise™ 196 Support
• Enterprise PL/I 4.1 Highlights
• z/OS XL C/C++ V1R12 Highlights
• What’s New in Metal C

3

zEnterprise 196 (z196) Support

4

ARCH(9) and TUNE(9)

• Both Enterprise PL/I 4.1 and z/OS XL C/C++ V1R12 compilers
provide exploitation for z196 with the new ARCH(9) and TUNE(9)
options (for PL/I TUNE(9) is implied).

• This is the result of leveraging the same optimization technology in
both compilers.

• ARCH(9) identifies z196 as the target hardware for the program
execution. Thus the new instructions introduced by z196 can be
exploited wherever possible.

• TUNE(9) instructs the compiler to optimize the instruction sequence
based on the new z196 microarchitecture.

5

z196

• The new z196 hardware adds these new facilities to the general
instruction set:

• High-word facility
• Interlocked-access facility
• Load/store-on-condition facility
• Distinct-operands facility
• Population-count facility

• It is now an Out-Of-Order (OOO) machine.

6

High-word Facility

• This facility adds a new set of instructions which consider the high-
word of the 64-bit GPRs self-contained 32-bit registers.

• In other words the 16 64-bit GPRs can be considered 32 32-bit
GPRs.

• Not every 32-bit instruction has a matching one in this facility.
• The high-word 32-bit can not be used in address expressions.
• Neither compiler currently exploits this facility.

7

Interlocked-storage-access Facility

• This facility provides atomic operations such as:

LOAD AND ADD
LOAD and bitwise operations

• The compilers do not currently exploit this facility.

8

Load/store-on-condition facility

• This facility provides instructions to select one or the other operands
for load or store based on the condition.

• This is particularly profitable for conditionally loading a value in the
register without incurring branch instructions.

• The branchless code sequence has the potential of allowing more
optimization opportunities.

• Both compilers currently utilize the LOAD ON CONDITION
instruction.

9

Load/store-on-condition facility …

• Example (PL/I):

test: proc returns(fixed bin(31) byvalue);

 dcl foo ext entry(fixed bin(31),fixed bin(31))
 options(byvalue)

 returns(fixed bin(31) byvalue);

 dcl (a,b) ext static fixed bin(31) init(0);

 if foo(a,b) = 0 then return(10);

 else return(20);

end;

. . .
BASR r14,r15
LTR r15,r15
LA r0,10
LA r15,20
LOCRE r15,r0
. . .

10

Distinct-operands Facility

• Many traditional instructions operate on two operands and the first
operand is replaced with the result. These are referred to as
destructive operations.

• This facility introduces a new set of non-destructive instructions
where a 3rd operand is added to contain the result.

• This facility includes operations such as ADD, SUBTRACT, SHIFT,
AND, OR, etc.

• This allows the compiler more flexibility in register allocation therefore
producing more efficient code.

11

Distinct-operands Facility …

• Example (C):

int foo(int a, int b) {
return a - b + a * b;
}

SLRK r0,r1,r2
MSR r1,r2
ALRK r3,r0,r1

12

Population-count Facility

• The new POPCNT instruction provides a count of the
number of one bits in each of the eight bytes of the input
GPR.

• Each byte in the output GPR contains an 8-bit binary
integer in the range of 0-8.

• This is the hardware assistance on software solution for
population count.

• XL C/C++ provides a new hardware built-in function to
support this new instruction.

13

Out-of-Order Microarchitecture

• z196 is the first z/Architecture machine with the Out-of-
Order (OOO) design.

• The OOO design allows more instructions on the execution
queues to be executed “free”, i.e. the CPU cycle consumed
is hidden by the longer waiting instructions in parallel.

• Under the TUNE(9) option the compiler schedules the
instructions to fill the execution queues to maximize OOO
and parallelism opportunities.

14

Performance of C/C++ code on z196

• Programs compiled with the V1R12 compiler may show significant
performance improvement when compared to the same programs
compiled with V1R11.

• We’ve seen 11% performance improvement* on a set of CPU
intensive integer based C/C++ programs.

• We’ve also seen 13% performance improvement* on a set of CPU
intensive floating-point based C/C++ programs.

• Improvements of 25%* or more were observed in some cases.
• % improvement = (geometric mean of B)/(geometric mean of A), both

running on z196, where:
A = programs compiled by V1R11 targeting the z10
B = programs compiled by V1R12 targeting the z196

* This is based on internal IBM lab measurements using the following compiler options:
For A: ILP32, XPLINK, HGPR, OPT(3), HOT, IPA(LEVEL(2), PDF, ARCH(8), TUNE(8)
For B: ILP32, XPLINK, HGPR, OPT(3), HOT, IPA(LEVEL(2), PDF, ARCH(9), TUNE(9)

Performance results for specific applications will vary; some factors affecting performance are the source code and the compiler options specified.

15

Performance of C/C++ code on z196 …

• What if you don’t recompile?
• We compared the performance of the same binaries executing on

z196 and z10.
• Binaries were built using the V1R11 compiler.

• On z196 we achieved overall improvements of:
• 50% for a set of cpu intensive integer based programs*.
• 125% for a set of cpu intensive floating point based programs*.

* This is based on internal IBM lab measurements using the following compiler options:
ILP32, XPLINK, HGPR, OPT(3), HOT, IPA(LEVEL(2), PDF, ARCH(8), TUNE(8)
Performance results for specific applications will vary; some factors affecting performance are the source
code and the compiler options specified.

16

Enterprise PL/I 4.1 Highlights

• Performance enhancement features
• Improved Debug Tool support
• XML validation
• New (sub)options for better quality
• Miscellaneous user requirements

17

Performance Enhancement Features

18

REFER

• Code that uses elements of structures with multiple REFERs can be
very expensive: each reference uses a costly library call to remap
the structure

• Now, for structures where all the elements are byte-aligned, those
calls will be avoided and straightforward inline code generated

• If all elements are byte-aligned, no padding is possible and thus the
address calculations are relatively simple

• To insure all elements are byte-aligned

• Specify UNALIGNED on the level-1 part of the declared
• Declare any NONVARYING BIT as ALIGNED

19

REFER

• E.g., consider these declares (and note the UNALIGNED):

 dcl (first,middle,last) char(*) var;

 dcl f_len fixed bin(31);
 dcl m_len fixed bin(31);
 dcl l_len fixed bin(31);
 dcl q pointer;
 dcl
 1 name based UNALIGNED,
 2 len_first fixed binary(31),
 2 first char(f_len refer(len_first)),
 2 len_middle fixed binary(31),
 2 middle char(m_len refer(len_middle)),
 2 len_last fixed binary(31),
 2 last char(l_len refer(len_last));

20

REFER

• A library call is still made to map the structure for the allocate, but
the 6 library calls that would have been done to make the
assignments have been eliminated:

 f_len = length(first);

 m_len = length(middle);

 l_len = length(last);

 allocate name set(q);

 q->name.first = first;

 q->name.middle = middle;

 q->name.last = last;

21

INDEX

• The code generated for the INDEX built-in function has been
optimized by Enterprise PL/I when there are only 2 arguments

• The compilers before Enterprise PL/I permitted only 2 arguments, but
Enterprise PL/I allows a third argument to specify where the search
should start

• This usage has now also been optimized when the second argument
is just a single byte, e.g. a semicolon or a blank

22

INDEX

• This can be very useful in code that processes some text in
semicolon delimited chucks, as in:

 pos = 0;
 pos = index(text, ‘;’, pos+1);

 do while(pos > 0);

 /* process text to semicolon */

 pos = index(text, ‘;’, pos+1);

 end;

23

Improved Debug Tool Support

24

Reduced object size

• DebugTool uses the statement number table generated by the
GONUMBER option (which is why TEST generally forces
GONUMBER to be on)

• With Enterprise V3, the GONUMBER table was part of the generated
object code (and hence linked load module) even if TEST
(SEPARATE) was used

• With Enterprise V4, if you specify TEST(SEP) and GONUMBER
(SEP), the compiler will place the statement number table in the side
file and thus significantly reduce the size of the generated object

• For compatibility, the default for GN is GN(NOSEP)

25

Improved automonitor support

• Under Enterprise V3, the compiler generated information for
AUTOMONITOR that specified only the name of the variable, but
omitted any subscripts or pointer qualifications

• Under Enterprise V4, when using TEST(SEPARATE), the compiler
generated information will name the fully qualified reference

• E.g., for a statement of the form A(2) = B(2), only A(2) and B(2) will
be listed in the monitor window (rather than all of A and all of B).

26

More support for implicit BASED

• Under Enterprise V3, the compiler generated a symbol table that
allowed implicit locator references for variables declared as BASED
on simple scalars

• With Enterprise V4, when using TEST(SEPARATE), the compiler will
generate information to identify complicated implicit locator
references such as those for a variable is BASED on

• ADDR of array element or
• other built-in functions (such as ADDRDATA, POINTERADD, etc)

27

DCL and XREF information

• Under Enterprise V4, when using TEST(SEPARATE), the compiler
will include in the side file, information identifying the source lines for

• declares
• references (xref refs)
• Assignments (xref sets)

• This will help enable DebugTool to provide information on these and/
or to allow you to search for these statements etc

28

XML Validation

29

PLISAXD

• The new PLISAXD built-in subroutine is like PLISAXC except that it
will cause the incoming XML to be validated

• It requires an additional argument: an Optimized Schema
Representation

• Like PLISAXC, PLISAXD uses the System Services XML Parser

• And its arguments are much like PLISAXC:

30

PLISAXD

• In order, its arguments are

• An event structure
• A token passed back to the event functions
• The address of a buffer containing the XML
• The size of the buffer
• The address of the buffer containing the OSR
• An optional codepage identifier

• The only difference from PLISAXC is the 5th parameter

• The event structure is the same as for PLISAXC

31

PLISAXD

• While the event structure is the same as for PLISAXC, the exception
event may see some additional exceptions found by the validation

• The z/OS Unix command xsdosrg will generate a file containing the
OSR for a given schema.

• You must do this before trying to run code using PLISAXD

• And then before invoking PLISAXD, you must read the OSR into a
buffer

• The Programming Guide has more details

32

New (sub)options for Better Quality

33

DEPRECATE (Racon - MR0427097311)

• The new DEPRECATE option will flag the usage of various include
files, built-in functions or variables that you wish to deprecate. It will
flag via

• the BUILTIN suboption, any specified name declared as a
BUILTIN

• the ENTRY suboption, any specified name declared as a level-1
ENTRY

• the INCLUDE suboption, any specified name used in an %
INCLUDE statement

• the VARIABLE suboption, any specified name declared as level-1
name and not having the BUILTIN or ENTRY attribute

34

DEPRECATE (Racon - MR0427097311)

• So if you want to flag the usage of UNSPEC and any
variable named just I, J, or N, you could specify

• DEPRECATE(BUILTIN(UNSPEC) VARIABLE(I,J,N))

• Specifying one of the suboptions does not change the
setting of any of the other suboptions specified previously.
So the above could also be specified as

• DEPRECATE(BUILTIN(UNSPEC)) DEPRECATE
(VARIABLE(I,J,N))

35

NOGLOBALDO (Telcordia – MR1104096225)

• Under the new RULES(NOGLOBALDO) option, the compiler will flag
any structure DO statement where the loop control variable is
declared in a parent procedure – as in this code

 a: proc;

 dcl jx fixed bin;

 call b;

 b: proc;

 do jx = 17 to 29;

 end;

 end b;

 end a;

36

NOGLOBALDO (Telcordia – MR1104096225)

• This usage creates

• non-transparent code (it is rarely good when a subroutine
changes the value of a variable in a parent procedure)

• less optimized code

• So flagging it is good

• For compatibility, the default is RULES(GLOBALDO)

37

NOPADDING (Telcordia – MR1110093235)

• Under the new RULES(NOPADDING) option, the compiler will flag
any structure where it can tell that there will be padding bytes

• For compatibility, the default is RULES(PADDING)

• RULES(NOPADDING) would flag, for example

 dcl

 1 a aligned,

 2 b fixed bin(31),

 2 c char(3),

 2 d fixed bin(31);

38

Miscellaneous User Requirements

39

Init of typed structures
(Wuestenrot - MR0312104052)

• In particular, the INIT attribute will now be allowed on leaf elements
of a DEFINE STRUCTURE statement

• However , INIT CALL, INIT TO, and VALUE will still not be
allowed on elements of a DEFINE STRUCTURE statement

• For example, the following is now allowed

 define struct
 1 b,

 2 b1 fixed bin init(17),

 2 b2 fixed bin init(19);

40

Init of typed structures
(Wuestenrot - MR0312104052)

• The new VALUE type-function may then be used to initialize or
assign to a variable having the corresponding structure type, e.g.

 define struct

 1 b,

 2 b1 fixed bin init(17),

 2 b2 fixed bin init(19);

 define struct

 1 c,

 2 c1 type b init(value(: b :)),

 2 c2 fixed bin init(23);

 dcl x type c static init(value(: c :));

 dcl y type c; y = value(: c :);

41

Init of typed structures
(Wuestenrot - MR0312104052)

• The VALUE function has one mandatory argument that must be the
name of a typed structure, and it returns an instance of that typed
structure with its initial values

• If the VALUE function is used with a structure type that is only
partially initialized, uninitialized bytes and bits will be zeroed out.

• The VALUE function may not be used with a structure type
containing no elements with the INITIAL attribute

42

SQL XREF (LVM - MR1112095051)

• The integrated SQL preprocessor will now accept (NO)XREF as an
option

• Under XREF, it will produce an XREF listing like that produced by
the old SQL precompiler

43

ONAREA (Telcordia - MR1217095934)

• If AREA has been raised, ONAREA will return a string specifying the
AREA reference for which the allocate failed

• So if ALLOCATE X IN(A) fails, ONAREA will return the string ‘‘A”

• And if ALLOCATE X IN(A1.A2(N)) fails, ONAREA will return “A1.A2
(N)”

44

REENTRANT Proc’s
(StateFarm - MR102909480)

• Before Enterprise PL/I, specifying REENTRANT in the OPTIONS
attribute of a PROC statement changed the code that was generated
and was required if the code was supposed to be reentrant

• With Enterprise PL/I, it did nothing

• With 4.1, it will now cause the compile to issue a message unless
you use either

• the RENT option, or
• the DFT(NONASGN) option

• This is under the assumption that such proc are supposed to be
reentrant and that under NORENT the compiler should flag any
assign to static

45

VALUE in structures (MR0213091212)

• The VALUE attribute is now allowed in (non-typed) structures, but
then

• All leaf elements of the structure must have the VALUE attribute

• The structure must not contain any unions or arrays

• This makes conversion of old declares using STATIC INIT to VALUE
easier (and the use of VALUE will let the compiler produce better
code)

• It also allows you to have “namespaces” of VALUE

46

z/OS XL C/C++ V1R12 Highlights

• Source and binary compatibility improvements
• Features for C++0x standard
• Debugging support improvements
• Compiler feedback improvements
• Miscellaneous Enhancements

47

Source and Binary Compatibility Improvements

48

typeof keyword

• This gcc keyword is now supported by XL C.
• It is already allowed by XL C++.
• It has the same semantics as the __typeof__ keyword.
• It is invoked by the KEYWORD(typeof) compiler option.
• Or –qkeyword=typeof when using xlc command.

 int main(void) {
 int rc = 66;
 typeof(rc) returnValue = 55;
 return returnValue;
 }

49

New NAMEMANGLING Suboption

• The ANSI name mangling scheme evolves between releases of XL C
++ compiler.

• The new NAMEMANGLING(zOSV1R12_ANSI) suboption is added to
allow future backward binary compatibility to V1R12 generated
binaries for NAMEMANGLING(ANSI).

• The NAMEMANGLING(ANSI) in V1R12 complies with the most
recent C++ language features and is equivalent to zOSV1R12_ANSI.

• This new suboption can also be specified using the language
directive
 #pragma namemangling(…)

50

Features for C++0x Standard

51

C++0x Features

• Variadic Templates
• Delegating Constructors
• Namespace Association
• long long Support
• C99 Preprocessor Changes
• Static Assert
• C99 Compatibility for TR1
• auto
• Decltype
• Extended Friend Declarations

52

C++0x Features

• These new features are enabled by LANGLVL(extended0x) option.
• The details of each feature can be found in the backup slides section

of this presentation.

53

Debugging Support Improvements

54

Capture Source Codeset

• The codeset determined by the compiler option LOCALE or
ASCII is included in the DWARF sidefile.

• This allows the debugger to display the source code in its
original codeset.

• In case demand load is used, the captured source in .mdbg
file will be correct.

55

Debug parameters in optimized code

• This allows dbx to display the function name and its parameter
values when the function is entered.

• This capability is extended to functions produced at higher
optimization levels, specifically OPT(2) or OPT(3).

• This is only supported with XPLINK when the STOREARGS
suboption is in effect.

• The DEBUG option turns on XPLINK(STOREARGS).

example:

(dbx64) where
foo(arg1 = 102, arg2 = 102, arg3 = 102), line 1 in "t.c"

56

Compiler Feedback Improvements

57

Message Severity Modification – C only

• New SEVERITY(I|W|E(msgid)) for message level tailoring.
• This allows the customization of severity levels of some of the

messages issued by the compiler.
• The informational messages can be changed to warning or error to

cause non-zero return code from the compile.
• The warning level messages can be changed to informational or error

to tailor the acceptable build conditions.
• Downgrading error messages to lower severity levels does not make

sense and is not allowed as the object code produced will have
problems in it if forced through the compile.

58

Message Severity Modification …

• Example:

 prototype.c:
 int main(void) {

 int * rc = (int*)malloc(sizeof(int));
 foo(rc);

 return *rc;
}
int foo(int * rc) {
 *rc = 55;
 return 0;
}

xlc prototype.c -qinfo=pro -qflag=I

INFORMATIONAL CCN3304 ./prototype.c:2 No function prototype given for "malloc".
INFORMATIONAL CCN3304 ./prototype.c:3 No function prototype given for "foo".

xlc prototype.c -qinfo=pro -qflag=i -qseverity=w=CCN3304

WARNING CCN3304 ./prototype.c:2 No function prototype given for "malloc".
WARNING CCN3304 ./prototype.c:3 No function prototype given for "foo".

59

Improved Aliasing Diagnostics

• Adhering to ANSI aliasing rules allows the compiler to apply safe
assumptions during optimization for better performing programs.

• But the ANSI aliasing rule violations can be difficult to find.

• The new INFO(ALS) option together with the FLAG(I) option trigger
the compiler to detect some of the ANSI aliasing rule violations and
to issue diagnostic messages.

60

Improved Aliasing Diagnostics …

• Example:

// t.C

int main(int argc) {

 int i = argc;

 short *sp = (short*)&i;

 *sp = 1; // line 4

 return 55;

}

xlC t.C -qinfo=als -qflag=i
"./t.C", line 4.3: CCN5590 (I) Dereference may not conform to the current

aliasing
rules.
"./t.C", line 4.3: CCN5591 (I) The dereferenced expression has type "short". “sp“
may point to “i" which has incompatible type "int".
"./t.C", line 4.3: CCN5592 (I) Check assignment at line 3 column 14 of ./t.C.

61

Miscellaneous Enhancements

62

__plo__XXXX Built-in Functions

• These built-in functions provide C/C++ language interface to the
sophisticated z/Architecture Perform Locked Operation (PLO)
instruction to perform these operations:

• compare and load
• compare and swap
• double compare and swap
• compare swap and store
• compare swap and double store
• compare swap and triple store

63

__plo__XXXX Built-in Functions …

• There are 24 individual built-in functions with the function name in the
format of __plo__XXXX where XXXX corresponds to one of the 24
Function Symbols defined in z/Architecture Principles of Operation.

for example, __plo__CLG is to generate the PLO instruction for
function code 1 – Compare and Load 64-bit operand.

• The ARCHITECTURE(5) option is required to use these functions.
• For operations with 64-bit or 128-bit operands, the LP64 option is

required.
• For 128-bit operands, quad-word alignment is required and it has to

be managed by the user.

64

__plo__XXXX Built-in Functions …

• For certain function codes the PLO instruction takes the address to a
parameter list which contains all the operands needed to perform the
specified operation.

• The layout of the parameter list varies based on function codes.
• To simplify the setup of the parameter list a set of helper macros and

typedefs are provided in builtins.h header file.
• For more information please check Chapter 33. “Using hardware

built-in functions” in z/OS V1R12 XL C/C++ Programming Guide.

65

Restrict Parameters – C only

• The restrict keyword was introduced with the C99 standard.
• The restrict keyword allows the programmer to tell the compiler that if

the memory addressed by the restrict qualified pointer is modified, no
other pointer will access that same memory. This allows the compiler
to perform more aggressive optimization.

• Adding the restrict keyword manually to source files can be very time
consuming.

• The new compile option RESTRICT provides an easy way to apply
the restrict qualifier to all pointer type parameters in the source file
being compiled.

• Of course you can only use this if you know all pointer parameters
are truly restrict.

66

Reusable PDF files

• Both stages of Profile-Directed Feedback (PDF) had to be done with
identical source file(s) and compiler option(s) or else PDF2 would
terminate with an error message.

• The V1R12 compiler relaxes this condition by having PDF2 to
tolerate and warn about the out-of-sync conditions from PDF1.

• This reduces the burden of redoing the PDF instrumentation step
when only incremental changes are made to an application.

• In particular, this will enable customers doing daily PDF builds to
instrument their application on a less frequent basis.

67

Compiler Infrastructure Improvements

• The optimizer and code generator has gone through reengineering
process to facilitate future technology adoption.

• The compilation time may be different for large or complex
applications when compiled at higher optimization levels.

• This also applies to Enterprise PL/I 4.1.

68

What’s New in Metal C

69

RENT Support

• The RENT option was not available with the METAL option.
• We recognize that a Metal C program deserves the ability to use

writable static and external variables while maintaining its reentrancy.
• The V1R12 XL C compiler enables the RENT option for METAL.
• We call it constructed reentrancy for programs with writable static/

extern data in that the Writable Static Area (WSA) is dynamically
constructed per invocation of the program.

• You have the ability to manage the storage for the WSA when the
RENT option is used.

• NOTE 1: The METAL RENT support is independent of and different
from NOMETAL RENT support. They should not be mixed.

• NOTE 2: Programs compiled with RENT and NORENT can be mixed
as long as the NORENT programs do not call RENT programs.

70

RENT Support …

• This is the scheme:
• The static data and extern data are defined in GOFF class

M_WSA.
• The binder builds the WSA image with initialization data from

M_WSA definitions found in all object files.
• The “main” function has a hook after the prolog code to connect to

a runtime routine called CCNZINIT.
• CCNZINIT locates the M_WSA class in the program object and

passes the address of M_WSA and its size to a user plug-in
routine for storage allocation and initialization.

• CCNZINIT returns the address of the allocated WSA storage to
“main”.

• “main” saves the returned WSA address .
• All other functions receives the WSA address in GPR 0.
• On exit from “main” CCNZTERM is called for cleanup.

71

RENT Support …

• IBM supplies default plug-in routines for WSA storage management.
• The default plug-in routine (CCANWSAI) issues this macro for both

AMODE 31 and AMODE 64:
STORAGE OBTAIN,LENGTH=(n),BNDRY=PAGE

• Unless you want to allocate the storage in other ways, the default
should be sufficient.

• The AMODE of the runtime routine is the same as the AMODE of
“main”.

• Likewise, the user plug-in is assumed to be the same AMODE as the
runtime routine.

• If your program has mixed AMODEs, you need to ensure the WSA
storage is addressable to all AMODE 31 functions.

72

RENT Support …

• For AMODE 31, the runtime routines are called CCNZINIT and
CCNZTERM.

• For AMODE 64, the runtime routines are called CCNZQINIT and
CCNZQTRM.

• The default plug-in routines are called CCNZWSAI and CCNZWSAT
for AMODE 31.

• And they are called CCNZQWSI and CCNZQWST for AMODE 64.
• The object code for these routines are supplied in the

CBC.SCCNOBJ dataset.
• Thus it is necessary to add this dataset to the binder SYSLIB

allocation when linking your Metal C RENT program.

73

RENT Support …

• The runtime routines assume that NAB is supplied by function
“main”, i.e. they use the same stack storage as “main”.

• This provides the opportunity, for example if the stack storage was
obtained from CICS by “main”, the Metal RENT runtime routines will
also operate on CICS storage.

• Allocating 1K of extra space for NAB should be sufficient for
CCNZINIT and CCNZTERM as well as CCNZWSAI and
CCNZWSAT. For AMODE 64, consider 2K.

74

RENT Support …

• Interface to the WSA initialization plug-in routine:
 typedef void * (init_func_t)(void * wsa_image_addr, unsigned

long wsa_size, void **user_info_addr, unsigned int alignment);

• Input parameters:
 wsa_image_addr - address of the WSA image in the program object

wsa_size - total size of the application's WSA
user_info_addr - address to a pointer field for saving your own
pointer
alignment - the minimum required alignment of the allocated WSA
storage. For example, alignment=8 means double-word alignment.

• Return value:
 The address of the allocated and initialized WSA storage.

75

RENT Support …

• Interface to the WSA termination plug-in routine:

 typedef void (term_func_t)(void * allocated_wsa_addr, unsigned
long wsa_size, void * user_info_addr);

• Input parameters:
 allocated_wsa_addr - address of the allocated WSA storage

wsa_size - total size of the application's WSA
user_info_addr - the saved user pointer

76

RENT Support …

• New Global Set Symbols:

&CCN_MAIN – to identify if the function is “main”
&CCN_RENT – to identify if compiled with the RENT option

&CCN_WSA_INIT – to provide your WSA initialization routine name
&CCN_WSA_TERM – to provide your WSA termination routine name

 For example:
 GBLC &CCN_WSA_INIT
 GBLC &CCN_WSA_TERM
&CCN_WSA_INIT SETC 'MYWSAI'
&CCN_WSA_TERM SETC 'MYWSAT'

77

RENT Support …

• With the RENT support, it is now possible to use Metal C, as an
alternative to assembler, to write programs to run in CICS
environment.

• You can use Metal C to write CICS applications using CICS API.
• You can also use Metal C to write CICS exit routines using CICS exit

programming interface (XPI).
• There are sample programs documented in the “Metal C

Programming Guide and Reference” to show a CICS version of the
“hello, world” program and an exit program.

78

Learn more at:

• IBM Rational software
• IBM Rational Software Delivery

Platform
• Process and portfolio management
• Change and release management
• Quality management

• Architecture management
• Rational trial downloads
• developerWorks Rational
• IBM Rational TV
• IBM Rational Business Partners
• IBM Rational C/C++ Cafe

http://www.ibm.com/software/rational
http://www-306.ibm.com/software/info/developer/index.jsp
http://www-306.ibm.com/software/info/developer/index.jsp
http://www-306.ibm.com/software/rational/offerings/lifecycle.html
http://www-306.ibm.com/software/rational/offerings/scm.html
http://www-306.ibm.com/software/rational/offerings/testing.html
http://www-306.ibm.com/software/rational/offerings/design.html
http://www.ibm.com/developerworks/rational/downloads/?S_TACT=105AGX23&S_CMP=RCD
http://www.ibm.com/developerworks/rational
http://www.ibm.com/developerworks/rational
http://www-306.ibm.com/software/info/television/index.jsp?cat=rational&media=video&item=en_us/rational/xml/M259765N40519Z80.xml
http://www-306.ibm.com/software/rational/partners/
http://www-949.ibm.com/software/rational/cafe/community/ccpp

79

© Copyright IBM Corporation 2010. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS w ithout w arranty
of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherw ise related to, these materials. Nothing contained in these materials is intended
to, nor shall have the effect of, creating any w arranties or representations f rom IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement
governing the use of IBM softw are. References in these materials to IBM products, programs, or services do not imply that they w ill be available in all countries in w hich IBM operates. Product
release dates and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a
commitment to future product or feature availability in any w ay. IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks
of the International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

80

Backup Slides

81

C++0x Feature Details

82

Variadic Templates [3]

• It is for generic containers with any number of parameters.
• Type and non-type template parameters can now be specified as

type and non-type parameter packs.
• Template parameter packs can be instantiated with 0 or more

arguments.
• In a function template, the template parameter pack can be used to

create a function parameter pack.
• Generic containers do not need to be designed with a hard-coded

number of template parameters.
• This allows easier implementation of generic containers such as

tuples or templates to represent function objects.

83

Variadic Templates …

• Example 1 (template class):

 // template parameter pack <class… A>
template <class...A> struct container{};

container<> a1;
container<int> a2;
container<int,char,float> a3;

template <bool...B> struct container1{};

container1<> b1;
container1<true> b2;
container1<true,false,true,true> b3;

84

Variadic Templates …

• Example 2 (template function):
 #include <cassert>
template <class A, class B> struct container{};

// arg is a function parameter pack
template <class... C, class... D> int func(container<C,D>... arg){
 // sizeof… returns the size of the function parameter pack
 assert(sizeof...(arg) == sizeof...(container<C,D>));
 return sizeof...(container<C,D>);
}

struct a1{}; struct a2{};

int main(void){
 container<a1,a2> a;
 assert(func(a,a,a,a,a) == 5);
 return 0;
}

85

Variadic Templates …

• Example 3 (pack expansion and access to pack members):

#include <iostream>
using namespace std;

template <class X> struct test{
 test(X data){ cout << "ctor test: " << data <<endl;}
};

template <class... A> void func(A... arg1){
test<int> data(99);}

template <class head, class... tail>
void func(head arg1, tail... arg2){
 test<head> local(arg1); // arg1 is the first argument
 func(arg2...); // arg2… is a pack expansion containing
 // all the remaining args
}

86

Variadic Templates …

int main(void){

 func();

 // match the 1st version of func
func();
// match the 2nd version of func

 func(1);
// match the 2nd version of func

 func(1,2,3,4);

 return 0;

}

Output:
ctor test: 99
ctor test: 1
ctor test: 99
ctor test: 1
ctor test: 2
ctor test: 3
ctor test: 4
ctor test: 99

87

Delegating Constructors [4]

• This allows Common initializations in multiple constructors
of the same class to be concentrated in one place in a
robust, maintainable manner.

• This should make the program more readable and
maintainable.

• This should also reduce the code size.

88

Delegating Constructors …

• Example 1 (simple positive execution):

#include <cstdio>

template <typename T, typename U> struct A {

 const T t;

 const U u;

 static T tdef;

 static U udef;

 A(T t_, U u_) : t(t_ ^ u_), u(u_) { }

 A(T t_) : A(t_, udef) { }

 A(U u_) : A(tdef, u_) { }

};

template <typename T, typename U> T A<T, U>::tdef;

template <typename T, typename U> U A<T, U>::udef;

89

Delegating Constructors …

int main(void) {

 A<unsigned char, unsigned>::tdef

 = 42u & 0x0F;

 A<unsigned char, unsigned>

 a(42u & 0xF0);

 std::printf("%d\n", a.t);

 return 0;

}

Output:
42

90

Delegating Constructors …

• Example 2 (delegating constructor with more than one initialiser):

struct A {
 int x, y;
 A() : y(10), A(42) { }
 A(int x) : x(x), y(0) { }
};

Compiler Diagnostics
"./t.C", line 3.10: CCN8439 (S) The constructor initializer is unexpected. This

constructor delegates at line 3, column 16.
"./t.C", line 3.16: CCN8441 (I) "A::A()" delegates to "A::A(int)".

This can be fixed by moving initialization of y from initialization list to the
constructor body of delegating constructor.

91

Delegating Constructors …

• Example 3 (delegating constructor that delegates to itself):

struct A {

 int x, y;

 A() : A(42) { }

 A(int x_) : A() { x = x_; }

};

Compiler Diagnostics
"./t.C", line 4.4: CCN8440 (S) "A::A(int)" delegates to itself.
"./t.C", line 4.4: CCN8441 (I) "A::A(int)" delegates to "A::A()".
"./t.C", line 3.4: CCN8441 (I) "A::A()" delegates to "A::A(int)".
This can be fixed by removing the entire initialization list from the

second delegating constructor on line 4.

92

Namespace Association [2]

• This is to allow namespace association with inline namespace
definitions.

• Members of an inline namespace to be used as if they were
members of another namespace.

• This gives library vendors the ability to use the same source and
object files (including interface headers and library archives) for all of
the implementations.

93

Namespace Association …

• Example (Use in library versioning with explicit specialization):
foo.h
namespace SomeLibrary {

#ifdef
SOME_LIBRARY_USE_VERSION_2_
 inline namespace version_2 { }
#else
 inline namespace version_1 { }
#endif

 namespace version_1 {
 template <typename T>
 int foo(T a) { return 1; }
 }
 namespace version_2 {
 template <typename T>
 int foo(T a) { return 2; }
 }
}

#include <foo.h>
#include <iostream>

// Client code
struct MyIntWrapper { int x;};

// specialize SomeLibrary::foo() using
// the correct version
namespace SomeLibrary {
 template <> int foo(MyIntWrapper a)
{ return a.x; }
}

int main(void) {
 using namespace SomeLibrary;
 MyIntWrapper intWrap = { 4 };
 std::cout << foo(intWrap) +
 foo(1.0) << std::endl;
}

94

long long Support [7]

• C++0x Standard formally introduced the ‘long long’ type for integers
that are larger than what can be represented in 4 bytes.

• The XL C++ compiler already had the support for ‘long long’ type.
• The ‘long long’ type is now included in the EXTENDED0X language

level.
• The new C++0x integral promotion rules produce a different result

from the existing IBM ‘long long’ type promotion rules.
• A diagnostic message is issued to alert the user when the use of

‘long long’ differs from the C++0x standard.

95

long long Support …

• Example (difference in promotion rules)
 int main(void) {

 // LONG_MAX is 2147483647

 long long x = 2147483648;

}

Due to promotion rules differences, this code produces the following
Informational message:
"./t.C", line 3.19: CCN8928 (I) Integral constant "2147483648" has
implied type unsigned long int under the non-C++0x language

levels.
It has implied type long long int under C++0x.

96

C99 Preprocessor Changes [8]

• The C++0x standard “imported” some C99 preprocessor rules that
were not in C++98.

• These changes make C++ and C99 more compatible with each
other.

• The _Pragma operator.
• Increased maximum limit for #line preprocessor directive.
• New predefined macros.
• Wide and narrow string concatenation.

97

C99 Preprocessor Changes …

• Example 1 (_Pragma and #line):
The following statements are 100% functionally equivalent.

#pragma comment(copyright, "IBM 2007")

_Pragma("comment(copyright, \"IBM 2007\")")

The #line directive previously could not accept a value greater than
32767, but this limit has been increased to 2147483647.

98

C99 Preprocessor Changes …

• Example 2 (new predefined macros):

__STDC__
macro defined to 0 for all language levels (i.e. It is ALWAYS defined
to 0)

__STDC_HOSTED__
macro is defined to 1 for LANGLVL=EXTENDED0x, and undefined
otherwise

99

C99 Preprocessor Changes …

• Example 3 (wide and narrow string concatenation):
• Prior to C++0x, you could not concatenate two strings together if

they were not both either “wide” or “narrow”.
• The resulting strings will default to “wide” but they can be casted

back to narrow.

int main() {

 char* narrow = (char*) "This string " L"will be narrow";

 wchar_t* wide = "This string " L"will be wide";

}

Without compiling this program under C++0x, both these string
assignments are in error.

100

Static Assert [6]

• This is a facility to enforce template parameter constraint.
• An assert macro tests assertions at runtime.
• An #error preprocessor directive is processed before templates are

instantiated.
• This should improve support for library building by allowing libraries

to detect common usage errors at compile time.

101

Static Assert …

• Example (assertion on template parameter type):

template <typename T> void foo(T s) {

 static_assert(sizeof(s) == 2, "foo not instantiated with short");

}

int main() {

 short s = 2;

 foo(2);

 return 0;

}

"./t.C", line 2.9: CCN7520 (S) "foo not instantiated with short"
"./t.C", line 1.28: CCN5700 (I) The previous message was produced
while processing "foo<int>(int)".
"./t.C", line 6.9: CCN5700 (I) The previous message was produced while
processing "main()".

102

Static Assert …

• No binary compatibility issues with existing programs.

• Keyword static_assert was NOT reserved by C++0x Standard so
users could have source code using this keyword as identifier.

• In extended0x language mode XL C++ will diagnose this keyword if it
is not used as static assert.

• Static assert can also be enabled by default which is handy for
library writers (enabled without -qlanglvl=extended0x).

 __extension__ static_assert(0,"user message 1");
 __static_assert (0,"user message 1");

103

C99 compatibility for TR1 [5]

• This supplies the missing C99 compatibility layer for TR1.
• The following C/C++ headers are now exporting C99-specific

symbols (macros, functions and function overloads): <complex.h>,
<math.h>, <cctype>, <cmath>, <cstdio>, <cstdlib>,
<cwchar>.

• The following new C++ headers have been added: <cfenv>,
<cinttypes>, <cstdbool>, <cstdint>.

• The exported symbols are placed in the namespace std::tr1.
• TR1 support is in closer agreement with the library described in C99.

104

C99 compatibility for TR1 …

• Example 1 (type-generic function template):

#include <cmath>

int main()

{

 double dbl = 0.0;

 long lng = 1L;

 std::tr1::signbit(dbl); // OK

 std::tr1::signbit(lng); // Errror

}

C99 macro ‘signbit’ is implemented as function template in TR1 with
template parameter constraint of accepting floating point types only.

105

C99 compatibility for TR1 …

• Example 2 (overloads):

#include <math.h>

float flt = 1.0F;
double dbl = 2.0;
long double ldbl = 3.0L;
long long llng = 4LL;
long lng = 5L;
int i = 6;
short shrt = 7;
unsigned long long ullng = 8ULL;
unsigned int ui = 9U;
Unsigned short ushrt = 10U;

pow(flt, dbl); // returns double
pow(flt, i); // returns double
pow(i, i); // returns double
pow(i, lng); // returns double
pow(ushrt, shrt);// returns double
pow(flt, ldbl); // returns long double
pow(llng, ldbl); // returns long double
pow(shrt, ldbl); // returns long double

sin(flt); // returns float
sin(ullng); // returns double
sin(ui); // returns double
sin(ldbl); // returns long double

Note that all function calls in bold received “no best match” error prior to this
feature.

106

auto

• Redesigned auto keyword to let the compiler automatically deduce
the variable’s type by looking at its initialiser.

• Eliminate need to specify type explicitly whenever an initialiser is
used.

• Very useful with multiple layers of templates.

107

auto …

• Example 1:

for (typename vector<T>::const_iterator iter = v.begin(); iter!
=v.end(); ++iter) {...}

can be replaced with:

for (auto iter = v.begin(); iter!=v.end(); ++iter) {...}

The auto type notation makes the code much more elegant to write
and it removes redundancy of specifying type when the compiler is
able to deduce the type.

108

auto …

• Example 2 (template argument):

template<class T, class U>

void foo(const vector<T>& vt, const vector<U>& vu)

{ auto tmp = vt[i]*vu[i];}

• It is difficult to write code without using auto type in cases where
the type of the variable depends on template argument.

• The type of variable tmp is what you get from multiplying T by U,
but exactly what that is can be hard for the human reader to figure
out.

• Compiler is able to deduce type of variable tmp once it handles
particular T and U.

109

auto …

• Meaning of C ++ keyword auto introduces source compatibility
issue.
• auto type when auto type deduction is turned on
• auto storage class specifier in non-C++0x mode

int main() {

// non-C++0x language level: OK, auto represents storage

// C++0x language level: ERROR, auto represents type

 auto int r;

}

110

Decltype [10]

• This keyword allows declarations to be defined by the type of an
arbitrary expression.

• Primary designed for automatically type deduced declarations for
function return types but useful in general.

• Can be used with conjunction with C++0x auto keyword.

111

Decltype …

• Example:

foo<int>::someType someVar1;
decltype(someVar1) someVar2; // someVar2 is the same type as
someVar1

template <typename T, typename _T>
decltype((*(T*)0) * (*(_T*)0)) foo (const _T& arg1, const T&
arg2)

{ return arg1 * arg2; }
// return type deduced by multiply operator

template <typename T, typename _T>
void performGenericWork(T t, _T _t) { auto f = foo(t, _t); }
// auto declaration deduced by function call

112

Extended friend declarations [11]

• The class keyword may be omitted on friend declaration.

• This allows generic programming: “friend T”, where 'T' is a template
parameter, which may be a class, typedef, or primitive type.

• The 'friend T' does not inject a new declaration in the way 'friend
class T' does.

• The extended friend replaces legacy behaviour of oldfriend support
with similar friend syntax but different semantics.

113

Extended friend declarations …

• Example:

 class C;

typedef C Ct;

class X1 {
friend C; // C++98 Warns about missing 'class' keyword
};

class X2 {
friend Ct; // C++98 emits an Error
friend D; // Error under both C++98 and C++0x
friend class D;
};

template <typename T> class R {
friend T; // C++98 emits an Error
};

R<C> rc;
R<int> Ri;

114

Links to C++0x draft papers
[1] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2857.pdf
[2] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2535.htm
[3] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2242.pdf
[4] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf
[5] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
[6] http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2004/n1720.html
[7] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1811.pdf
[8] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1653.htm
[9] http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
[10] http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
[11] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1791.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2857.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2857.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2535.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1811.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1653.htm
http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1791.pdf

	What is New in Enterprise PL/I 4.1�and�z/OS XL C/C++ V1R12
	Slide 2
	zEnterprise 196 (z196) Support
	ARCH(9) and TUNE(9)
	z196
	High-word Facility
	Interlocked-storage-access Facility
	Load/store-on-condition facility
	Load/store-on-condition facility …
	Distinct-operands Facility
	Distinct-operands Facility …
	Population-count Facility
	Out-of-Order Microarchitecture
	Performance of C/C++ code on z196
	Performance of C/C++ code on z196 …
	Enterprise PL/I 4.1 Highlights
	Performance Enhancement Features
	REFER
	REFER
	REFER
	INDEX
	INDEX
	Improved Debug Tool Support
	Reduced object size
	Improved automonitor support
	More support for implicit BASED
	DCL and XREF information
	XML Validation
	PLISAXD
	PLISAXD
	PLISAXD
	New (sub)options for Better Quality
	DEPRECATE (Racon - MR0427097311)
	DEPRECATE (Racon - MR0427097311)
	NOGLOBALDO (Telcordia – MR1104096225)
	NOGLOBALDO (Telcordia – MR1104096225)
	NOPADDING (Telcordia – MR1110093235)
	Miscellaneous User Requirements
	Init of typed structures �(Wuestenrot - MR0312104052)
	Init of typed structures �(Wuestenrot - MR0312104052)
	Init of typed structures �(Wuestenrot - MR0312104052)
	SQL XREF (LVM - MR1112095051)
	ONAREA (Telcordia - MR1217095934)
	REENTRANT Proc’s �(StateFarm - MR102909480)
	VALUE in structures (MR0213091212)
	z/OS XL C/C++ V1R12 Highlights
	Source and Binary Compatibility Improvements
	typeof keyword
	New NAMEMANGLING Suboption
	Features for C++0x Standard
	C++0x Features
	C++0x Features
	Debugging Support Improvements
	Capture Source Codeset
	Debug parameters in optimized code
	Compiler Feedback Improvements
	Message Severity Modification – C only
	Message Severity Modification …
	Improved Aliasing Diagnostics
	Improved Aliasing Diagnostics …
	Miscellaneous Enhancements
	__plo__XXXX Built-in Functions
	__plo__XXXX Built-in Functions …
	__plo__XXXX Built-in Functions …
	Restrict Parameters – C only
	Reusable PDF files
	Compiler Infrastructure Improvements
	What’s New in Metal C
	RENT Support
	RENT Support …
	RENT Support …
	RENT Support …
	RENT Support …
	RENT Support …
	RENT Support …
	RENT Support …
	RENT Support …
	Slide 78
	© Copyright IBM Corporation 2010. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.�
	Backup Slides
	C++0x Feature Details
	Variadic Templates [3]
	Variadic Templates …
	Variadic Templates …
	Variadic Templates …
	Variadic Templates …
	Delegating Constructors [4]
	Delegating Constructors …
	Delegating Constructors …
	Delegating Constructors …
	Delegating Constructors …
	Namespace Association [2]
	Namespace Association …
	long long Support [7]
	long long Support …
	C99 Preprocessor Changes [8]
	C99 Preprocessor Changes …
	C99 Preprocessor Changes …
	C99 Preprocessor Changes …
	Static Assert [6]
	Static Assert …
	Static Assert …
	C99 compatibility for TR1 [5]
	C99 compatibility for TR1 …
	C99 compatibility for TR1 …
	auto
	auto …
	auto …
	auto …
	Decltype [10]
	Decltype …
	Extended friend declarations [11]
	Extended friend declarations …
	Links to C++0x draft papers

