
SHARE - Copyright IBM Corp. 2001, 2010

WhatWhat’’s New ins New in
z/OS Language Environment z/OS Language Environment –– C runtime C runtime

Library?Library?

John Monti

IBM Poughkeepsie

jmonti@us.ibm.com

2

SHARE - Copyright IBM Corp. 2001, 2010

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

IEEE is a trademark in the United States and other countries of the Institute of Electrical and Electronics Engineers, Inc.

POSIX® is a registered Trademark of The IEEE.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product, or service names may be trademarks or service marks of others.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Trademarks

�CICS®
�IMS

�Language Environment®

�OS/390®
�z/OS®

Trademarks

3

SHARE - Copyright IBM Corp. 2001, 2010

Agenda

� What’s New in z/OS V1.12?

� Additional information available in Appendix:

� What’s New in z/OS V1.11?

Agenda

4

SHARE - Copyright IBM Corp. 2001, 2010

What’s New in z/OS V1.12?

� BSAM >64K Track support for type=record

� C++ TR1 support

� realloc() optimization

� VSAM EA KSDS

Agenda

5

SHARE - Copyright IBM Corp. 2001, 2010

BSAM >64K Track support for type=record

� Provide support for large format sequential data sets
greater than 65,535 tracks/volume opened for BSAM
(seek) under record I/O.

– Read, write, reposition

– Must be opened type=record without specifying
noseek

– ftell() and fseek() continue to be limited to 2G-1
records.

– fgetpos() and fsetpos() may reposition past the 2G-1
limit with the following restrictions:

– The data set contains 256 TB - 256 bytes or less

– The data set uses 2 GB blocks or less

Agenda

6

SHARE - Copyright IBM Corp. 2001, 2010

C++ TR1 support

� Exposes the C99 namespace and provides C++
overloads for math functions.

� Expose the functionality by either defining _TR1_C99 or
__IBMCPP_TR1__

� The focus of LI178 was Chapter 8, ‘C’ compatibility, of the
ISO/IEC DTR 19768 Technical Draft Technical Report on
C++ Library Extensions Report.

Agenda

7

SHARE - Copyright IBM Corp. 2001, 2010

realloc() optimization

� The C/C++ function realloc() supports a new environment
variable

– _CEE_REALLOC_CONTROL

– Parameter 1 – Lower bound threshold

– The number of bytes above which the tolerance percentage
(parm 2) will be applied

– Parameter 2 – Tolerance Percentage

– The percentage of extra storage to be obtained

– 0 to 100

What’s New in z/OS V1.12?

8

SHARE - Copyright IBM Corp. 2001, 2010

realloc() optimization

� Example

– _CEE_REALLOC_CONTROL=100,20

– First request is for 80 bytes

– Storage obtained as normal

– A request to change this storage to 90 bytes

– Storage obtained as normal

– A request to change this storage to 100 bytes

– At or above threshold, percentage is applied

– Storage obtained is 120 bytes (100 + 100 * 20%)

– A request to change this storage to 110 bytes

– No storage need be obtained (we already have 120 bytes)

What’s New in z/OS V1.12?

9

SHARE - Copyright IBM Corp. 2001, 2010

realloc() optimization

� Can be very useful for programs that make many
requests to reallocate storage larger than originally
requested.

– Many string manipulation routines make heavy use of storage
reallocation.

� If tolerance percentage is 0 or
_CEE_REALLOC_CONTROL is not set no change in
behavior.

What’s New in z/OS V1.12?

10

SHARE - Copyright IBM Corp. 2001, 2010

VSAM EA for KSDS with alternate indexes

� z/OS XL C/C++ applications can now read/write/position
beyond the 4GB boundary in VSAM KSDS data sets
using alternate index keys.

– Using fopen() or freopen() against an existing VSAM
KSDS extended addressable data set using an
alternate index pathname

– Once opened, using other FILE functions like flocate()
to process the stream

� DOC APAR PK83456 extends this support back to z/OS
1.8

What’s New in z/OS V1.12?

11

SHARE - Copyright IBM Corp. 2001, 2010

Thank you!

The End..

12

SHARE - Copyright IBM Corp. 2001, 2010

Appendix

� Decimal Floating Point

Appendix

Out the Newbie52 (and WithMetalWings) for this hide. Beautiful views further down the trail. Thanks fo

13

SHARE - Copyright IBM Corp. 2001, 2010

Appendix – Decimal Floating Point

� <math.h>

– The following math functions are new for C/C++ decimal floating point:

cbrtd32() cbrtd64() cbrtd128()

expm1d32() expm1d64() expm1d128()

exp2d32() exp2d64() exp2d128()

fmad32() fmad64() fmad128()

fmodd32() fmodd64() fmodd128()

hypotd32() hypotd64() hypotd128()

log1pd32() log1pd64() log1pd128()

log2d32() log2d64() log2d128()

quantexpd32() __remquod32() quantexpd64()

__remquod64() quantexpd128() __remquod128()

14

SHARE - Copyright IBM Corp. 2001, 2010

Appendix – Decimal Floating Point

� <math.h>

– For C++ applications, the following functions are overloaded for the
_Decimal32, _Decimal64, and _Decimal128 data types:

cbrt() expm1()

exp2() fma()

fmod() hypot()

log1p() quantexp()

log2()

� For example: _Decimal32 cbrt(_Decimal32)

15

SHARE - Copyright IBM Corp. 2001, 2010

What’s new in z/OS R11?

� Decimal Floating Point Part 3 Support

� C/C++ compiler dependencies

� Globalization White Paper 2007

� CCSID functions under CICS

� File I/O Tracing

What’s New in z/OS V1.11?

16

SHARE - Copyright IBM Corp. 2001, 2010

Decimal Floating Point Support - Part 3

� The new decimal floating point functionality made available in this
release is an expansion of the initial support from z/OS V1R9. C/C++
applications can now take advantage of functions and macros that
were previously unavailable.

– Note: APAR PK71899 rolls back the V1R11 decimal floating point support

to V1R8.

� The following support is added for decimal floating point in z/OS
V1R11:

1. New decimal floating point math functions are provided (see appendix)

2. New conversion specifiers for printf() family of functions are provided

– %a and %A are provided for the printf() family of functions to be used with Decimal
Floating Point types.

– These new conversion specifiers determine which type of formatting style is to be used by
printf(). Either e/E or f/F style formatting.

What’s New in z/OS V1.11?

17

SHARE - Copyright IBM Corp. 2001, 2010

Decimal Floating Point Support - Part 3

� Hardware with the Decimal Floating Point Facility must be installed.

� The DFP and ARCH(7) compiler options are required.

� The __STDC_WANT_DEC_FP__ feature test macro must be defined.

What’s New in z/OS V1.11?

18

SHARE - Copyright IBM Corp. 2001, 2010

C/C++ Compiler Dependencies

� inline versions of four wmem* functions (performance)

� extended character types (capability)

� detect accidental use of Language Environment C
headers under Metal C (usability)

What’s New in z/OS V1.11?

19

SHARE - Copyright IBM Corp. 2001, 2010

C/C++ Compiler Dependencies

� inline versions of four wmem* functions (performance)

– Using inline wmem* functions, the customer can:

– Improve application performance by using the inline versions
of wmemchr(), wmemcmp(), wmemcpy(), and wmemset()

– The inline versions of functions always perform better because
it eliminates the overhead of a library call

– The inline versions are not available under LP64

What’s New in z/OS V1.11?

20

SHARE - Copyright IBM Corp. 2001, 2010

C/C++ Compiler Dependencies

� To use inline wmem* functions:

– #define appropriate feature test macro

– #include <wchar.h>

– use wmemchr(), wmemcmp(), wmemcpy(), or
wmemset()

– compile with ARCH(7)

– compile with z/OS XL C/C++ V1R11 compiler

– do not use LP64 compile option

What’s New in z/OS V1.11?

21

SHARE - Copyright IBM Corp. 2001, 2010

C/C++ Compiler Dependencies

� Using extended character types, the customer can:

– Use certain width character types, char16_t and char32_t, that are

guaranteed consistent across platforms (where the types are supported)

� To use extended character types:

– #include <uchar.h>

– use char16_t or char32_t types

– compile with LANGLVL(EXTENDED) under XL C

– compile with z/OS XL C/C++ V1R11 compiler

What’s New in z/OS V1.11?

22

SHARE - Copyright IBM Corp. 2001, 2010

C/C++ Compiler Dependencies

� Using Metal C header detection, the customer can:

– Detect misuse of Language Environment C headers during compilation of

Metal C application

– This change provides earlier problem detection should any Language

Environment C supported feature be attempted to be used in a Metal C

application

– when Language Environment C headers are included in a compile that

uses the XL C METAL option, an error message will be issued from each

Language Environment C header that is processed

What’s New in z/OS V1.11?

23

SHARE - Copyright IBM Corp. 2001, 2010

Globalization White Paper 2007

� A new locale for Serbia, sr_RS.UTF-8 is provided

– This support provides the ability for XL C/C++ applications to now be run

under the Serbia locale

– The new locale for Serbia is an ASCII locale

What’s New in z/OS V1.11?

24

SHARE - Copyright IBM Corp. 2001, 2010

CCSID functions under CICS

� CCSID functions are now supported under CICS

– __toCcsid()

– __CSNameType()

– __toCSName()

– __CcsidType()

� Provides the ability for XL C/C++ applications running under CICS to
convert between code set names and their CCSID and also
determine the type for a given code set name or CCSID (ASCII or
EBCDIC)

What’s New in z/OS V1.11?

25

SHARE - Copyright IBM Corp. 2001, 2010

File I/O Tracing

� Generate a high-level trace for C/C++ file I/O

– The file I/O trace is controlled with an environment variable

– By default, file I/O tracing will be turned off

– The function trace is limited to functions that work with a (FILE *) stream

– Significantly reduce time spent to recreate error

– Improve accuracy and focus of problem determination

– This is not meant for first-failure data capture

– The initial implementation adds the framework for more detailed levels of

trace information

What’s New in z/OS V1.11?

26

SHARE - Copyright IBM Corp. 2001, 2010

File I/O Tracing

� The File I/O Trace is invoked by:

– An Environment Variable

– _EDC_IO_TRACE

– Description:

– Indicates which files to perform file I/O tracing on, the level of detail to provide for
file I/O tracing, and the trace buffer size to use for each file.

– The _EDC_IO_TRACE format is: _EDC_IO_TRACE=(Filter,Detail,Buffer Size)

– Details of the values and default settings are described in the C/C++

Programming Guide

What’s New in z/OS V1.11?

27

SHARE - Copyright IBM Corp. 2001, 2010

File I/O Tracing

� Locating the trace file:

– Under TSO or BATCH

– DDname EDCTRACE

– Batch log (SYSOUT=* by default)

– Under z/OS UNIX System Services

– Directory found in environment variable _CEE_DMPTARG

– The current working directory, if the directory is writable

– The directory found in environment variable TMPDIR

– The /tmp directory

The name of this file uses the following format: /path/EDCTRACE.Date.Time.Pid

What’s New in z/OS V1.11?

