
Slowed down by LE? Slowed down by LE?

Perhaps the Perhaps the

CEEPIPI service CEEPIPI service

can help!can help!

Thomas Thomas PetrolinoPetrolino

IBM PoughkeepsieIBM Poughkeepsie

tapetro@us.ibm.comtapetro@us.ibm.com

©Copyright IBM Corporation 2001, 2010
SHARE in Boston, August 2010

2SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending
upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will
achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and
performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local
IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Trademarks

•CICS®

•DB2®

•Language Environment®

•OS/390®

•z/OS®

3SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

AgendaAgenda

�Understanding The Basics of PreInitialization

�Writing a Preinit Application

�Other Preinit Topics

�A Preinit Example

�Sources of Additional Information

Understanding The Understanding The

Basics of Basics of

PreInitializationPreInitialization

5SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Background Background -- LE Init/TermLE Init/Term

�Process - Collection of Resources
(LE message file, library code/data)

�unaffected by HLL semantics, logically
independent address space

�Enclave - Collection of Routines
(Load modules, Heap, external data)

�defines scope of HLL semantics, first
routine is designated "main"

�Thread - "thread" of execution (Stack,
raised conditions)

�share the resources of the enclave

Process

Enclave

Thread

6SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Understanding The BasicsUnderstanding The Basics

�Read Language Environment Programming Guide, Chapter 30
"Using preinitialization services" (SA22-7561)

�Read Language Environment Programming Guide for 64-bit
Virtual Addressing Mode, Chapter 22 “Using preinitialization
services with AMODE 64” (SA22-7569)

7SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Understanding The BasicsUnderstanding The Basics……

�You can use preinitialization to enhance the performance of
certain applications

�Preinitialization lets a non-LE-conforming application (eg.
Assembler) initialize an LE environment once, perform
multiple executions of LE-conforming programs using that
environment, and then explicitly terminate the LE environment

�Because the environment is initialized only once (even if you
perform multiple executions), you free up system resources
and allow for faster responses to your requests.

8SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

non-LE-conforming

(LE not active)

Invoke A

Invoke B

Invoke C

Initialize LE

Run A

Terminate LE

LE-conforming

Initialize LE

Run B

Terminate LE

LE-conforming

Initialize LE

Run C

Terminate LE

LE-conforming

A nonA non--PreinitPreinit scenarioscenario

9SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

LE Preinit Init

Invoke A

Invoke B

Invoke C

LE Preinit Term

Same application using Same application using PreinitPreinit

Run specified program

LE-conforming (Preinit environment)

non-LE-conforming
(LE not active)

10SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Older forms of preinitialization Older forms of preinitialization

�The following is a list of pre-LE language-specific forms of
preinitialization. These environments are supported by LE but
will not be enhanced.

�C and PL/I -- supports prior form of C and PL/I preinitialization
(PICI) through use of Extended Parameter List

�C++ -- no prior form of preinitialization

�COBOL -- supports the prior form of COBOL preinitialization
through use of RTEREUS run-time option and ILBOSTP0 and
IGZERRE functions

�Fortran -- no prior form of preinitialization

�LE Library Routine Retention (LRR) is also supported but is
not the "preferred" method

11SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Restrictions on preRestrictions on pre--LE preinitializationLE preinitialization

�POSIX(ON)

�XPLINK

�AMODE 64

12SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Users of preinitializationUsers of preinitialization

�Numerous IBM products currently utilize
preinitialization

•Program Management Binder – for C++
demangler

•DB2 – for stored procedures

•CICS – TS V3.1 for XPLINK support

•. . .

�Many IBM customers…

Writing a Writing a

PreinitPreinit ApplicationApplication

14SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

The The PreinitPreinit ApplicationApplication

�A Preinit application consists of:

•One or more HLL routines

•A Preinit Table

•A Preinit Assembler Driver

15SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

HLL RoutinesHLL Routines

CBL LIB,QUOTE

IDENTIFICATION DIVISION.

PROGRAM-ID. HLLPIPI.

DATA DIVISION.

WORKING-STORAGE SECTION.

PROCEDURE DIVISION.

DISPLAY "COBOL subprogram beginning".

DISPLAY "Called using LE Preinitialization".

DISPLAY "Call subroutine interface.".

DISPLAY "COBOL subprogram returns to caller.".

GOBACK.

An example subroutine: Notice anything unusual?

Your answer should be “Nope!”

16SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

HLL RoutinesHLL Routines

�Written in

�C

�C++

�PL/I

�COBOL

�May be main or subroutine

�If using an XPLINK or AMODE 64 subroutine, it
must be declared “fetchable”

17SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

The The PreinitPreinit tabletable

�The Preinit table identifies routines to be executed (and
optionally loaded) in a Preinit environment
�It contains routine names and/or entry point addresses

�It is possible to have an "empty" Preinit table with empty rows

�routines can be added later using the Preinit add_entry interface

�In the Preinit table, entry point addresses are maintained
with the High Order Bit set to indicate AMODE of routine
�HOB on, routine is AMODE31 and invoked in 31 bit mode

�HOB off, routine is AMODE24 and invoked in 24 bit mode

�CEEBXITA (Asm User Exit), CEEBINT (HLL User Exit),
CEEUOPT are obtained from first entry in Preinit table

18SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Generate the Generate the PreinitPreinit tabletable

�LE provides the following assembler macros to generate the
Preinit table
�CEEXPIT generates a header for the Preinit table

�CEEXPITY generates an entry within the Preinit table

�specify entry name and/or entry_point address of the routine

�each invocation generates a row in the Preinit table

�if name is blank and entry_point is zero, then an empty row is added to
the Preinit table

�CEEXPITS identifies the end of the Preinit table

�CELQPIT, CELQPITY, CELQPITS for AMODE 64

�The size of the Preinit table cannot be increased dynamically

19SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

The The PreinitPreinit TableTable

Declared in the data section of the Preinit Assembler Driver:
:

:

* ===

* Preinitialization Table.

* ===

*

PPTBL CEEXPIT , Preinitialization Table with index

CEEXPITY HLLPIPI,0 dynamically loaded routine

CEEXPITY ,HLLEXTRN statically-bound routine

CEEXPITY , empty Table slot

CEEXPITS , Endof PreInit table

*

EXTRN HLLEXTRN

*

:

:

20SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

The The PreinitPreinit Assembler DriverAssembler Driver

�The Preinit Assembler Driver is responsible for:

�Loading the Preinit Interface module

�Initializing / Terminating the Preinit environment

�Calling HLL routines using the Preinit environment

21SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

The The PreinitPreinit Interface ModuleInterface Module

�The main Preinit interface is the loadable module "CEEPIPI“
�The AMODE 64 Preinit interface is the loadable module “CELQPIPI”

�CEEPIPI handles the requests and provides services for:
�LE Environment Initialization

�Application Invocation

�LE Environment Termination

�All requests for services by CEEPIPI must be made from a
non-Language Environment environment

�The parameter list for CEEPIPI is an OS standard linkage
parameter list
�First parameter on each call to CEEPIPI is a Preinit function code

22SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Loading CEEPIPILoading CEEPIPI

:

:

*

* Load LE CEEPIPI service routine into main storage.

*

LOAD EP=CEEPIPI Load CEEPIPI routine dynamically

ST R0,PPRTNPTR Save the addr of CEEPIPI routine

*

:

:

23SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit InitializationInitialization

�LE supports three forms of preinitialized environments

�They are distinguished by the level of initialization
�init_main - supports the execution of main routine

�initializes LE environment through process-level

�each call_main invocation initializes enclave- and thread-level

�init_sub - supports the execution of subroutines

�initializes LE environment through process-, enclave-, and thread-level

�each call_sub invocation has minimal overhead

�init_sub_dp - a special form of the init_sub that allows multiple
preinitialized environments, for executing subroutines, to be created
under the same task (TCB). For AMODE 64 init_sub is comparable.

•Only one POSIX(ON) environment per TCB

24SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit Initialization...Initialization...

�main Environment
�Advantages

�A new, pristine environment is created

�Run-Time options can be specified for each application

�Disadvantages

�Poorer performance

�sub Environment
�Advantages

�Best performance

�Disadvantages

�The environment is left in what ever state the previous
application left it (including WSA, working storage, etc)

�Run-Time options cannot be changed

25SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

*

* Initialize an LE Preinitialization main environment.

*

INIT_ENV EQU *

LA R5,PPTBL Get address of Preinit Table

ST R5,@CEXPTBL Ceexptbl_addr ->Preinit Table

L R15,PPRTNPTR Get address of CEEPIPI routine

* Invoke CEEPIPI routine

CALL (15),(INITMAIN,@CEXPTBL,@SRVRTNS,TOKEN)

* Check return code:

LTR R2,R15 Is R15 = zero?

BZ CMAIN Yes (success)..go to next section

* No (failure)..issue message

WTO ’ASMPIPI: call to (INIT_MAIN) failed’,ROUTCDE=11

C R2,=F’8’ Check for partial initialization

BE TMAIN Yes..go do Preinit termination

* No..issue message & quit

WTO ’ASMPIPI: INIT_MAIN failure RC is not 8.’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

Initializing a Initializing a PreinitPreinit EnvironmentEnvironment

26SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

*

* Initialize an LE Preinitialization subroutine environment.

*

INIT_ENV EQU *

LA R5,PPTBL Get address of Preinit Table

ST R5,@CEXPTBL Ceexptbl_addr ->Preinit Table

L R15,PPRTNPTR Get address of CEEPIPI routine

* Invoke CEEPIPI routine

CALL (15),(INITSUB,@CEXPTBL,@SRVRTNS,RUNTMOPT,TOKEN)

* Check return code:

LTR R2,R15 Is R15 = zero?

BZ CSUB Yes (success)..go to next section

* No (failure)..issue message

WTO ’ASMPIPI: call to (INIT_SUB) failed’,ROUTCDE=11

C R2,=F’8’ Check for partial initialization

BE TSUB Yes..go do Preinit termination

* No..issue message & quit

WTO ’ASMPIPI: INIT_SUB failure RC is not 8.’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

Initializing a Initializing a PreinitPreinit EnvironmentEnvironment

27SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Calling the HLL RoutineCalling the HLL Routine

�Language Environment provides services to invoke either a
main routine or subroutine.
�When invoking main routines, the environment must have been
initialized with init_main

�When invoking subroutines, the environment must have been
initialized with init_sub or init_sub_dp

�The Preinit environment identified by token is activated
before the specified routine is called

�After the called routine returns, the environment
becomes "dormant“

�The parameter list is passed to the application as-is

�XPLink & 64-bit convert from OS format to XPLink

28SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Calling the HLL RoutineCalling the HLL Routine……
�It is important to provide the parameter list in the exact format that
the compiled routine is expecting

�C Example: ‘TESTPGM 10 5’ when interactively invoked

�C function prototype: main(int argc, char **argv)

�Assembler parameter list layout:
PARMPTR DC A(PARMLIST) Pointer to PARMLIST

*

PARMLIST DS 0A Parameter List

ARGC DC F'3' Number of arguments

ARGVPTR DC A(ARGV) Pointer to Argument Array

*

ARGV DS 0A Argument Array

ARCV0 DC A(ARGV0S) Pointer to Argument 1

ARGV1 DC A(ARGV1S) Pointer to Argument 2

ARGV2 DC A(ARGV2S) Pointer to Argument 3

*

ARGV0S DC C'TESTPGM',X'00' Argument 1

ARGV1S DC C'10',X'00' Argument 2

ARGV2S DC C'5',X'00' Argument 3

29SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

:

:

*

* Call the main, which is loaded by LE

*

CMAIN EQU *

L R15,PPRTNPTR Get address of CEEPIPI routine

CALL (15),(CALLMAIN,PTBINDEX,TOKEN,RUNTMOPT,PARMPTR, X

ENCRETC,ENCRSNC,APPLFBC)

* Check return code:

LTR R2,R15 Is R15 = zero?

BZ TMAIN Yes (success)..go to next section

* No (failure)..issue message & quit

WTO ’ASMPIPI: call to (CALL_MAIN) failed’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

:

:

Calling a HLL MainCalling a HLL Main

30SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

:

:

*

* Call the subroutine, which is loaded by LE

*

CSUB EQU *

L R15,PPRTNPTR Get address of CEEPIPI routine

CALL (15),(CALLSUB,PTBINDEX,TOKEN,PARMPTR, X

SUBRETC,SUBRSNC,SUBFBC)

* Check return code:

LTR R2,R15 Is R15 = zero?

BZ TSUB Yes (success)..go to next section

* No (failure)..issue message & quit

WTO ’ASMPIPI: call to (CALL_SUB) failed’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

:

:

Calling a HLL SubroutineCalling a HLL Subroutine

31SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit TerminationTermination

�The Preinit application terminates the Preinit environment
once it is no longer needed

�Termination performs cleanup of the resources associated
with the environment

�A single Termination service handles all types of Preinit
environments

32SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

:

:

*

* Terminate the environment

*

TSUB EQU *

L R15,PPRTNPTR Get address of CEEPIPI routine

CALL (15),(TERM,TOKEN,ENV_RC)

* Check return code:

LTR R2,R15 Is R15 = zero ?

BZ DONE Yes (success)..go to next section

* No (failure)..issue message & quit

WTO ’ASMPIPI: call to (TERM) failed’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

*

:

:

Terminating the Terminating the PreinitPreinit EnvironmentEnvironment

Other Other PreinitPreinit TopicsTopics

34SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Reentrancy ConsiderationsReentrancy Considerations

�You can make multiple calls to main routines or subroutines

� In general, you should specify only reentrant routines for multiple
invocations:

�Multiple calls to a reentrant main routine are not influenced by a previous
execution of the same routine

�For example, external variables are reinitialized for every call to a
reentrant main

�If you have a nonreentrant COBOL program, condition IGZ0044S
is signalled when the routine is invoked again

�If you have a nonreentrant C main() program that uses external
variables, then when your routine is invoked again, the variables
will be in last-use state

�Multiple calls to reentrant subroutines reuse the same working
storage, it is only initialized once during (call_sub)

35SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Stop Semantics in Stop Semantics in PreinitPreinit subssubs

�When one of the following occurs within a preinitialized
environment for subroutines, the logical enclave is
terminated:
�C exit(), abort(), or signal handling function specifying a normal or
abnormal termination

�COBOL STOP RUN statement

�PL/I STOP or EXIT

�an unhandled condition causing termination of the (only) thread

�The process level of the environment is retained

�Modules in Preinit table are not deleted

�The next call to a subrtn in this environment will initialize
a new enclave (possibly with different user exits)

36SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Additional Additional PreinitPreinit ServicesServices

�Calling a Subroutine By Address

�call_sub_addr: Invoke a subroutine by address within an
already initialized environment

�Improving Performance of a Sequence of Calls

�start_seq: Start a sequence of uninterruptible calls to a
number of subroutines

�end_seq: Terminate a sequence of uninterruptible calls to
a number of subroutines

37SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Additional Additional PreinitPreinit ServicesServices……

�Managing the Preinit Table

�add_entry: Dynamically add a routine to an environment

�delete_entry: Delete an entry from the Preinit table,
making it available to a later add_entry

�Extracting Information from an Environment

�identify_environment: Determine characteristics of a
Preinit environment

�identify_entry: Identify the language of an entry in the
Preinit table

�identify_attributes: Identify the attributes of an entry in
the Preinit table

38SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

init_sub,
init_sub_dp call_main

call_sub or
call_sub_addr
ended with STOP
semantics

term for "clean"
init_sub or
init_sub_dp
environment term

CEEBXITA (enclave
init) x x x(next call)
CEEBINT
(HLL exit) x x x(next call)
C atexit() functions

x x x
CEEBXITA
(enclave term) x x x
CEEBXITA
(process term) x x

User Exit InvocationUser Exit Invocation

�Main environments: CEEBXITA and CEEBINT application-specific user exits are
taken from the main routine being called.

� Sub environments: CEEBXITA and CEEBINT application-specific user exits are
taken from the first entry in Preinit table.

�All other occurrences are ignored!

39SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

XPLINK XPLINK PreinitPreinit

�Preinit applications can run XPLINK-compiled
programs in a Preinit environment.

�LE initializes either an XPLINK environment or a
"regular" (non-XPLINK) environment

�Main: XPLINK environment if routine in first Preinit
Table entry is XPLINK

�Subroutine: XPLINK environment if routine in first
Preinit Table entry is XPLINK, or if XPLINK(ON)
run-time option is specified

40SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

XPLINK XPLINK PreinitPreinit......

�call_main may cause an environment switch

�If running a non-XPLINK environment, and either the
program was compiled XPLINK or XPLINK(ON) was
specified, the environment will be rebuilt XPLINK,
and remain that way.

�Sub environments do not switch

�A call to an XPLINK subroutine in a non-XPLINK
environment will result in a “mismatch” error.

�Recommendation: Do not use non-XPLINK
routines in an XPLINK Preinit environment.

41SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Service routinesService routines

�Under Preinit, you can specify several service routines for use with
running a main routine or subroutine in the preinitialized environment

�To use the routines, specify a list of addresses of the routines in a service
routine vector

�Pass the address of this list on the init_main, init_sub, or init_sub_dp interfaces

�The service_rtns parameter that you specify contains the address of the vector
itself

�If this pointer is specified as zero (0), LE routines are used instead of the
service routines

�Why?

�Execution environment has its own storage or program management services

•Now supported in AMODE 64 Language Environment

�z/OS V1.9: @Load and @Delete service routines

�z/OS V1.11: @Getstore, @Freestore, and @Msgrtn service routines

42SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Service routines...Service routines...

�Count

�the number of fullwords that follow

�User Word

�passed to the service routines

�provides a means for your routine to communicate to the
service routines

�@Workarea

�address of a work area of at least 256 bytes that is doubled
word aligned. First word contains the length of area provided.
Required if service routines present in vector

�@Load

�loads named routines for application management

�@Delete

�deletes routines for application management

43SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Service routines...Service routines...

�@Getstore

�allocates storage on behalf of the storage manager. This
routine relies on the caller to provide a save area, which can
be the @Workarea

�@Freestore

�frees storage on behalf of storage manager

�@Exceprtn

�traps program interrupts and abends for condition
management

�@Msgrtn

�allows error messages to be processed by caller of the
application

44SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit DiagnosticsDiagnostics

�Preinit Trace Table

�IPCS Support to format Preinit control blocks
and trace table

45SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit DiagnosticsDiagnostics……

•Preinit Trace Table Characteristics

�Tracing is always active

•Begins when the Preinit environment is
initialized and ends when the environment is
terminated

�Trace is kept in an in-storage trace table

•Fixed size (4096 bytes)

•Wraps when the end has been reached

46SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit DiagnosticsDiagnostics……

•New keyword for the LEDATA IPCS Verbexit:

�PTBL(value) - Formats Preinit control block and trace
table based on value:

•"CURRENT“ - Preinit data associated with the
current or specified TCB is displayed.

•<address> - Preinit data at that address is displayed.

•“*“ – Data for all active and dormant Preinit
environments within the current address space are
displayed; *** This option is time-consuming ***.

•"ACTIVE“ – Display Preinit data associated with each
TCB in the address space.

47SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Control Block

=== > VERBEXIT LEDATA ‘PTBL(CURRENT)’

PreInitialization Programming Interface Trace Data

CEEPIPI Environment Table Entry and Trace Entry :

Active CEEPIPI Environment (Address 25805CB0)

Eyecatcher : CEEXIPTB

TCB address : 008D1B08

CEEPIPI Environment :

Non-XPLINK Environment

Environment Type : MAIN

Sequence of Calls not active

Exits not established

Signal Interrupt Routines not registered

Service Routines are not active

CEEPIPI Environment Enclave Initialized

Number of CEEPIPI Table Entries = 2

48SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Control Block…

CEEPIPI Table Entry Information :

CEEPIPI Table Index 0 (Entry 1)

Routine Name = HLLCRTN

Routine Type = C/C++

Routine Entry Point = A5810B38

Routine Function Pointer = A5810CC0

Routine Entry is Non-XPLINK

Routine was loaded by Language Environment

Routine Address was resolved

Routine Function Descriptor was valid

Routine Return Code = 0

Routine Reason Code = 0

49SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Control Block…

Entry of routine in CEEPIPI Table for Index 0 (25805DB8)

+000000 25805DB8 A5810CC0 25811B30 80000000 00000000

00000000 00000000 00000000 00000000

|va...a..........................|

+000020 25805DD8 00000000 00000000 00000000 A5810B38

00000003 258117C8 00000003 25810B38

|............va.......a.H.....a..|

+000040 25805DF8 A5810B38 000014C8 C8D3D3C3 D9E3D540

00000000 00000000 00000000 00000000

|va.....HHLLCRTN|

CEEPIPI Table Index 1 (Entry 2) not in use.

50SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Trace Table

CEEPIPI Trace Table Entries :

Call Type = INIT_MAIN

PIPI Driver Address = A5800A82

Load Service Return Code = 0

Load Service Reason Code = 0

Most Recent Return Code = 0

Most Recent Reason Code = 0

An ABEND will be issued if storage can not be obtained

PreInit Environment will not allow EXEC CICS commands

Service RC = 0 :A new environment was initialized

51SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Trace Table…

Call Type = ADD_ENTRY

Routine Table Index = 1

Routine Name = HLLPIPI

Routine Address = A5812E20

Load Service Return Code = 0

Load Service Reason Code = 3

Service RC = 0 :The routine was added to the PreInit table.

Call Type = CALL_MAIN

Routine Table Index = 1

Enclave Return Code = 0

Enclave Reason Code = 0

Routine Feedback Code = 0000000000000000

Service RC = 0 :The environment was activated and the

routine called.

52SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Trace Table…

Call Type = DELETE_ENTRY

Routine Table Index = 1

Routine Name = HLLCOBOL

Routine Address = A5812E20

Service RC = 0 :The routine was deleted from the

PreInit table.

Call Type = CALL_MAIN

Routine Table Index = 0

Enclave Return Code = 0

Enclave Reason Code = 0

Routine Feedback Code = 0000000000000000

Service RC = 0 :The environment was activated and

the routine called.

A A PreinitPreinit ExampleExample

The following example provides an illustration of an assembler pThe following example provides an illustration of an assembler program rogram

ASMPIPI ASSEMBLE invoking CEEPIPI to:ASMPIPI ASSEMBLE invoking CEEPIPI to:
��Initialize a LE Initialize a LE PreinitPreinit subroutine environment subroutine environment

��Load and call a reentrant C/COBOL/PLI subroutineLoad and call a reentrant C/COBOL/PLI subroutine
��Terminate the LE Terminate the LE PreinitPreinit environmentenvironment

54SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

�Following the assembler program are interchangeable
examples of the program HLLPIPI written in:
�C, COBOL, and PL/I

�HLLPIPI is called by an assembler program, ASMPIPI.

�ASMPIPI uses the Language Environment preinitialized
program subroutine call interface

�You can use the assembler program to call the HLL
versions of HLLPIPI.

ExampleExample

55SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

*

*COMPILATION UNIT: LEASMPIP

* *

* Function: CEEPIPI - Initialize the Preinitialization *

* environment,call a Preinitialization *

* HLL program,and terminate the environment. *

* *

* 1. Call CEEPIPI to initialize a subroutine environment under LE. *

* 2. Call CEEPIPI to load and call a reentrant HLL subroutine. *

* 3. Call CEEPIPI to terminate the LE Preinitialization environment. *

* *

* Note: ASMPIPI is not reentrant. *

* *

Example...Example...

56SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

* =======================================

* Standard program entry conventions.

* =======================================

ASMPIPI CSECT

STM R14,R12,12(R13) Save caller’s registers

LR R12,R15 Get base address

USING ASMPIPI,R12 Identify base register

ST R13,SAVE+4 Back-chain the save area

LA R15,SAVE Get addr of this routine’s save area

ST R15,8(R13) Forward-chain in caller’s save area

LR R13,R15 R13 -> save area of this routine

*

* Load LE CEEPIPI service routine into main storage.

*

LOAD EP=CEEPIPI Load CEEPIPI routine dynamically

ST R0,PPRTNPTR Save the addr of CEEPIPI routine

Example...Example...

57SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

*

* Initialize an LE Preinitialization subroutine environment.

*

INIT_ENV EQU *

LA R5,PPTBL Get address of Preinit Table

ST R5,@CEXPTBL Ceexptbl_addr ->Preinit Table

L R15,PPRTNPTR Get address of CEEPIPI routine

* Invoke CEEPIPI routine

CALL (15),(INITSUB,@CEXPTBL,@SRVRTNS,RUNTMOPT,TOKEN)

* Check return code:

LTR R2,R15 Is R15 = zero?

BZ CSUB Yes (success)..go to next section

* No (failure)..issue message

WTO ’ASMPIPI: call to (INIT_SUB) failed’,ROUTCDE=11

C R2,=F’8’ Check for partial initialization

BE TSUB Yes..go do Preinit termination

* No..issue message & quit

WTO ’ASMPIPI: INIT_SUB failure RC is not 8.’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

Example...Example...

58SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

*

* Call the subroutine, which is loaded by LE

*

CSUB EQU *

L R15,PPRTNPTR Get address of CEEPIPI routine

CALL (15),(CALLSUB,PTBINDEX,TOKEN,PARMPTR, X

SUBRETC,SUBRSNC,SUBFBC)

* Check return code:

LTR R2,R15 Is R15 = zero?

BZ TSUB Yes (success)..go to next section

* No (failure)..issue message & quit

WTO ’ASMPIPI: call to (CALL_SUB) failed’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

Example...Example...

59SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

*

* Terminate the environment

*

TSUB EQU *

L R15,PPRTNPTR Get address of CEEPIPI routine

CALL (15),(TERM,TOKEN,ENV_RC)

* Check return code:

LTR R2,R15 Is R15 = zero ?

BZ DONE Yes (success)..go to next section

* No (failure)..issue message & quit

WTO ’ASMPIPI: call to (TERM) failed’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

*

* Standard exit code.

*

DONE EQU *

LA R15,0 Passed return code for system

L R13,SAVE+4 Get address of caller’s save area

L R14,12(R13) Reload caller’s register 14

LM R0,R12,20(R13) Reload caller’s registers 0-12

BR R14 Branch back to caller

Example...Example...

60SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

* ===

* CONSTANTS and SAVE AREA.

* ===

SAVE DC 18F’0’

PPRTNPTR DS A Save the address of CEEPIPI routine

*

* Parameters passed to an (INIT_SUB) call.

INITSUB DC F’3’ Function code to initialize for subr

@CEXPTBL DC A(PPTBL) Address of Preinitialization Table

@SRVRTNS DC A(0) Addr of service-rtns vector,0 = none

RUNTMOPT DC CL255’’ Fixed length string of runtime optns

TOKEN DS F Unique value returned(output)

*

* Parameters passed to a (CALL_SUB) call.

CALLSUB DC F’4’ Function code to call subroutine

PTBINDEX DC F’0’ The row number of Preinit Table entry

PARMPTR DC A(0) Pointer to @PARMLIST or zero if none

SUBRETC DS F Subroutine return code (output)

SUBRSNC DS F Subroutine reason code (output)

SUBFBC DS 3F Subroutine feedback token (output)

Example...Example...

61SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

*

* Parameters passed to a (TERM) call.

TERM DC F’5’ Function code to terminate

ENV_RC DS F Environment return code (output)

* ===

* Preinitialization Table.

* ===

*

PPTBL CEEXPIT , Preinitialization Table with index

CEEXPITY HLLPIPI,0 0=dynamically loaded routine

CEEXPITS , Endof PreInit table

*

LTORG

R0 EQU 0

R1 EQU 1

...

R14 EQU 14

R15 EQU 15

END ASMPIPI

Example...Example...

62SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Example...Example...

#include <stdio.h>

HLLPIPI ()

{

printf("C subroutine beginning \n");

printf("Called using LE PreInit call \n");

printf("Subroutine interface.\n");

printf("C subroutine returns to caller \n");

}

C Subroutine Called by ASMPIPI

63SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Example...Example...

CBL LIB,QUOTE

*Module/File Name: IGZTPIPI

* *

* HLLPIPI is called by an assembler program, ASMPIPI. *

* ASMPIPI uses the LE preinitialized program *

* subroutine call interface. HLLPIPI can be written *

* in COBOL, C, or PL/I. *

* *

IDENTIFICATION DIVISION.

PROGRAM-ID. HLLPIPI.

DATA DIVISION.

WORKING-STORAGE SECTION.

PROCEDURE DIVISION.

DISPLAY "COBOL subprogram beginning".

DISPLAY "Called using LE Preinitialization".

DISPLAY "Call subroutine interface.".

DISPLAY "COBOL subprogram returns to caller.".

GOBACK.

COBOL Program Called by ASMPIPI

64SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Example...Example...

/*Module/File Name: IBMPIPI */

/**/

/* */

/* HLLPIPI is called by an assembler program, ASMPIPI. */

/* ASMPIPI uses the LE preinitializedprogram */

/* subroutine call interface.HLLPIPI can be written */

/* in COBOL,C,or PL/I. */

/* */

/**/

HLLPIPI: PROC OPTIONS(FETCHABLE);

DCL RESULT FIXED BIN(31,0)INIT(0);

PUT SKIP LIST

(’HLLPIPI: PLI subroutine beginning.’);

PUT SKIP LIST

(’HLLPIPI: CalledLE Preinit Call ’);

PUT SKIP LIST

(’HLLPIPI: Subroutine interface.’);

PUT SKIP LIST

(’HLLPIPI: PLI program returns to caller.’);

RETURN;

END HLLPIPI;

PL/I Routine Called by ASMPIPI

65SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Sources of Additional InformationSources of Additional Information

�LE Debug Guide and Runtime Messages

�LE Programming Reference

�LE Programming Guide (64-bit too!)

�LE Customization

�LE Migration Guide

�LE Writing ILC Applications

�Web site

�http://www.ibm.com/servers/eserver/zseries/zos/le/

