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AgendaAgenda

�Understanding The Basics of PreInitialization

�Writing a Preinit Application

�Other Preinit Topics

�A Preinit Example

�Sources of Additional Information



Understanding The Understanding The 

Basics of Basics of 

PreInitializationPreInitialization
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Background Background -- LE Init/TermLE Init/Term

�Process - Collection of Resources 
(LE message file, library code/data)

�unaffected by HLL semantics, logically 
independent address space

�Enclave - Collection of Routines
(Load modules, Heap, external data)

�defines scope of HLL semantics, first 
routine is designated "main"

�Thread - "thread" of execution (Stack, 
raised conditions)

�share the resources of the enclave

Process

Enclave

Thread
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Understanding The BasicsUnderstanding The Basics

�Read Language Environment Programming Guide, Chapter 30 
"Using preinitialization services" (SA22-7561)

�Read Language Environment Programming Guide for 64-bit 
Virtual Addressing Mode, Chapter 22 “Using preinitialization 
services with AMODE 64” (SA22-7569)
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Understanding The BasicsUnderstanding The Basics……

�You can use preinitialization to enhance the performance of 
certain applications

�Preinitialization lets a non-LE-conforming application (eg. 
Assembler) initialize an LE environment once, perform 
multiple executions of LE-conforming programs using that 
environment, and then explicitly terminate the LE environment

�Because the environment is initialized only once (even if you 
perform multiple executions), you free up system resources 
and allow for faster responses to your requests.
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non-LE-conforming

(LE not active)

Invoke A

Invoke B

Invoke C

Initialize LE

Run A

Terminate LE

LE-conforming

Initialize LE

Run B

Terminate LE

LE-conforming

Initialize LE

Run C

Terminate LE

LE-conforming

A nonA non--PreinitPreinit scenarioscenario
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LE Preinit Init

Invoke A

Invoke B

Invoke C

LE Preinit Term

Same application using Same application using PreinitPreinit

Run specified program

LE-conforming (Preinit environment)

non-LE-conforming
(LE not active)
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Older forms of preinitialization Older forms of preinitialization 

�The following is a list of pre-LE language-specific forms of 
preinitialization. These environments are supported by LE but 
will not be enhanced.

�C and PL/I -- supports prior form of C and PL/I preinitialization 
(PICI) through use of Extended Parameter List

�C++ -- no prior form of preinitialization

�COBOL -- supports the prior form of COBOL preinitialization 
through use of RTEREUS run-time option and ILBOSTP0 and 
IGZERRE functions

�Fortran -- no prior form of preinitialization

�LE Library Routine Retention (LRR) is also supported but is 
not the "preferred" method
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Restrictions on preRestrictions on pre--LE preinitializationLE preinitialization

�POSIX(ON)

�XPLINK

�AMODE 64
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Users of preinitializationUsers of preinitialization

�Numerous IBM products currently utilize 
preinitialization

•Program Management Binder – for C++ 
demangler

•DB2 – for stored procedures

•CICS – TS V3.1 for XPLINK support

•. . .

�Many IBM customers…



Writing a Writing a 

PreinitPreinit ApplicationApplication
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The The PreinitPreinit ApplicationApplication

�A Preinit application consists of:

•One or more HLL routines

•A Preinit Table

•A Preinit Assembler Driver
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HLL RoutinesHLL Routines

CBL LIB,QUOTE

IDENTIFICATION DIVISION.

PROGRAM-ID. HLLPIPI.

DATA DIVISION.

WORKING-STORAGE SECTION.

PROCEDURE DIVISION.

DISPLAY "COBOL subprogram beginning".

DISPLAY "Called using LE Preinitialization".

DISPLAY "Call subroutine interface.".

DISPLAY "COBOL subprogram returns to caller.".

GOBACK.

An example subroutine: Notice anything unusual?

Your answer should be “Nope!”
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HLL RoutinesHLL Routines

�Written in 

�C

�C++

�PL/I

�COBOL

�May be main or subroutine

�If using an XPLINK or AMODE 64 subroutine, it 
must be declared “fetchable”
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The The PreinitPreinit tabletable

�The Preinit table identifies routines to be executed (and 
optionally loaded) in a Preinit environment
�It contains routine names and/or entry point addresses 

�It is possible to have an "empty" Preinit table with empty rows

�routines can be added later using the Preinit add_entry interface

�In the Preinit table, entry point addresses are maintained 
with the High Order Bit set to indicate AMODE of routine
�HOB on,  routine is AMODE31 and invoked in 31 bit mode

�HOB off, routine is AMODE24 and invoked in 24 bit mode

�CEEBXITA (Asm User Exit), CEEBINT (HLL User Exit), 
CEEUOPT are obtained from first entry in Preinit table
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Generate the Generate the PreinitPreinit tabletable

�LE provides the following assembler macros to generate the 
Preinit table
�CEEXPIT generates a header for the Preinit table

�CEEXPITY generates an entry within the Preinit table

�specify entry name and/or entry_point address of the routine

�each invocation generates a row in the Preinit table

�if name is blank and entry_point is zero, then an empty row is added to 
the Preinit table

�CEEXPITS identifies the end of the Preinit table

�CELQPIT, CELQPITY, CELQPITS for AMODE 64

�The size of the Preinit table cannot be increased dynamically
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The The PreinitPreinit TableTable

Declared in the data section of the Preinit Assembler Driver:
:

:

* =====================================================================

* Preinitialization Table.

* =====================================================================

*

PPTBL    CEEXPIT , Preinitialization Table with index

CEEXPITY HLLPIPI,0 dynamically loaded routine

CEEXPITY ,HLLEXTRN statically-bound routine

CEEXPITY , empty Table slot

CEEXPITS , Endof PreInit table

*

EXTRN    HLLEXTRN

*

:

:
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The The PreinitPreinit Assembler DriverAssembler Driver

�The Preinit Assembler Driver is responsible for:

�Loading the Preinit Interface module

�Initializing / Terminating the Preinit environment

�Calling HLL routines using the Preinit environment
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The The PreinitPreinit Interface ModuleInterface Module

�The main Preinit interface is the loadable module "CEEPIPI“
�The AMODE 64 Preinit interface is the loadable module “CELQPIPI”

�CEEPIPI handles the requests and provides services for:
�LE Environment Initialization

�Application Invocation

�LE Environment Termination 

�All requests for services by CEEPIPI must be made from a 
non-Language Environment environment

�The parameter list for CEEPIPI is an OS standard linkage 
parameter list
�First parameter on each call to CEEPIPI is a Preinit function code
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Loading CEEPIPILoading CEEPIPI

:

:

*

* Load LE CEEPIPI service routine into main storage.

*

LOAD  EP=CEEPIPI Load CEEPIPI routine dynamically

ST    R0,PPRTNPTR Save the addr of CEEPIPI routine

*

:

:
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PreinitPreinit InitializationInitialization

�LE supports three forms of preinitialized environments

�They are distinguished by the level of initialization
�init_main - supports the execution of main routine

�initializes LE environment through process-level

�each call_main invocation initializes enclave- and thread-level

�init_sub - supports the execution of subroutines

�initializes LE environment through process-, enclave-, and thread-level

�each call_sub invocation has minimal overhead

�init_sub_dp - a special form of the init_sub that allows multiple 
preinitialized environments, for executing subroutines, to be created 
under the same task (TCB).  For AMODE 64 init_sub is comparable.

•Only one POSIX(ON) environment per TCB
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PreinitPreinit Initialization...Initialization...

�main Environment
�Advantages

�A new, pristine environment is created

�Run-Time options can be specified for each application

�Disadvantages

�Poorer performance

�sub Environment
�Advantages

�Best performance

�Disadvantages

�The environment is left in what ever state the previous 
application left it (including WSA, working storage, etc)

�Run-Time options cannot be changed
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*

* Initialize an LE Preinitialization main environment.

*

INIT_ENV EQU   *

LA    R5,PPTBL Get address of Preinit Table

ST    R5,@CEXPTBL Ceexptbl_addr ->Preinit Table

L     R15,PPRTNPTR Get address of CEEPIPI routine

* Invoke CEEPIPI routine

CALL  (15),(INITMAIN,@CEXPTBL,@SRVRTNS,TOKEN)

* Check return code:

LTR   R2,R15 Is R15 = zero?

BZ    CMAIN Yes (success)..go to next section

* No (failure)..issue message

WTO   ’ASMPIPI: call to (INIT_MAIN) failed’,ROUTCDE=11

C     R2,=F’8’ Check for partial initialization

BE    TMAIN Yes..go do Preinit termination

* No..issue message & quit

WTO   ’ASMPIPI: INIT_MAIN failure RC is not 8.’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

Initializing a Initializing a PreinitPreinit EnvironmentEnvironment
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*

* Initialize an LE Preinitialization subroutine environment.

*

INIT_ENV EQU   *

LA    R5,PPTBL Get address of Preinit Table

ST    R5,@CEXPTBL Ceexptbl_addr ->Preinit Table

L     R15,PPRTNPTR Get address of CEEPIPI routine

* Invoke CEEPIPI routine

CALL  (15),(INITSUB,@CEXPTBL,@SRVRTNS,RUNTMOPT,TOKEN)

* Check return code:

LTR   R2,R15 Is R15 = zero?

BZ    CSUB Yes (success)..go to next section

* No (failure)..issue message

WTO   ’ASMPIPI: call to (INIT_SUB) failed’,ROUTCDE=11

C     R2,=F’8’ Check for partial initialization

BE    TSUB Yes..go do Preinit termination

* No..issue message & quit

WTO   ’ASMPIPI: INIT_SUB failure RC is not 8.’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

Initializing a Initializing a PreinitPreinit EnvironmentEnvironment
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Calling the HLL RoutineCalling the HLL Routine

�Language Environment provides services to invoke either a 
main routine or subroutine. 
�When invoking main routines, the environment must have been 
initialized with init_main

�When invoking subroutines, the environment must have been 
initialized with init_sub or init_sub_dp

�The Preinit environment identified by token is activated 
before the specified routine is called

�After the called routine returns, the environment 
becomes "dormant“

�The parameter list is passed to the application as-is

�XPLink & 64-bit convert from OS format to XPLink
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Calling the HLL RoutineCalling the HLL Routine……
�It is important to provide the parameter list in the exact format that 
the compiled routine is expecting

�C Example: ‘TESTPGM 10 5’ when interactively invoked

�C function prototype: main(int argc, char **argv)

�Assembler parameter list layout:
PARMPTR  DC A(PARMLIST)          Pointer to PARMLIST

*

PARMLIST DS 0A                   Parameter List

ARGC     DC F'3'                 Number of arguments 

ARGVPTR  DC A(ARGV)              Pointer to Argument Array

*

ARGV     DS    0A                Argument Array

ARCV0    DC    A(ARGV0S)         Pointer to Argument 1

ARGV1    DC    A(ARGV1S)         Pointer to Argument 2

ARGV2    DC    A(ARGV2S)         Pointer to Argument 3

*                                                     

ARGV0S   DC    C'TESTPGM',X'00'  Argument 1

ARGV1S   DC    C'10',X'00'       Argument 2

ARGV2S   DC    C'5',X'00'        Argument 3
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:

:

*

* Call the main, which is loaded by LE

*

CMAIN   EQU   *

L     R15,PPRTNPTR Get address of CEEPIPI routine

CALL  (15),(CALLMAIN,PTBINDEX,TOKEN,RUNTMOPT,PARMPTR,    X

ENCRETC,ENCRSNC,APPLFBC)

* Check return code:

LTR   R2,R15 Is R15 = zero?

BZ    TMAIN Yes (success)..go to next section

* No (failure)..issue message & quit

WTO   ’ASMPIPI: call to (CALL_MAIN) failed’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

:

:

Calling a HLL MainCalling a HLL Main
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:

:

*

* Call the subroutine, which is loaded by LE

*

CSUB     EQU   *

L     R15,PPRTNPTR Get address of CEEPIPI routine

CALL  (15),(CALLSUB,PTBINDEX,TOKEN,PARMPTR,              X

SUBRETC,SUBRSNC,SUBFBC)

* Check return code:

LTR   R2,R15 Is R15 = zero?

BZ    TSUB Yes (success)..go to next section

* No (failure)..issue message & quit

WTO   ’ASMPIPI: call to (CALL_SUB) failed’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

:

:

Calling a HLL SubroutineCalling a HLL Subroutine
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PreinitPreinit TerminationTermination

�The Preinit application terminates the Preinit environment 
once it is no longer needed

�Termination performs cleanup of the resources associated 
with the environment

�A single Termination service handles all types of Preinit
environments
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:

:

*

* Terminate the environment

*

TSUB     EQU   *

L     R15,PPRTNPTR Get address of CEEPIPI routine

CALL  (15),(TERM,TOKEN,ENV_RC)

* Check return code:

LTR   R2,R15 Is R15 = zero ?

BZ    DONE Yes (success)..go to next section

* No (failure)..issue message & quit

WTO   ’ASMPIPI: call to (TERM) failed’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

*

:

:

Terminating the Terminating the PreinitPreinit EnvironmentEnvironment



Other Other PreinitPreinit TopicsTopics
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Reentrancy ConsiderationsReentrancy Considerations

�You can make multiple calls to main routines or subroutines

� In general, you should specify only reentrant routines for multiple 
invocations:

�Multiple calls to a reentrant main routine are not influenced by a previous 
execution of the same routine

�For example, external variables are reinitialized for every call to a 
reentrant main

�If you have a nonreentrant COBOL program, condition IGZ0044S 
is signalled when the routine is invoked again

�If you have a nonreentrant C main() program that uses external 
variables, then when your routine is invoked again, the variables 
will be in last-use state

�Multiple calls to reentrant subroutines reuse the same working 
storage, it is only initialized once during (call_sub)
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Stop Semantics in Stop Semantics in PreinitPreinit subssubs

�When one of the following occurs within a preinitialized 
environment for subroutines, the logical enclave is 
terminated:
�C exit(), abort(), or signal handling function specifying a normal or 
abnormal termination

�COBOL STOP RUN statement

�PL/I STOP or EXIT

�an unhandled condition causing termination of the (only) thread

�The process level of the environment is retained

�Modules in Preinit table are not deleted

�The next call to a subrtn in this environment will initialize 
a new enclave (possibly with different user exits)
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Additional Additional PreinitPreinit ServicesServices

�Calling a Subroutine By Address

�call_sub_addr: Invoke a subroutine by address within an 
already initialized environment

�Improving Performance of a Sequence of Calls

�start_seq: Start a sequence of uninterruptible calls to a 
number of subroutines

�end_seq: Terminate a sequence of uninterruptible calls to 
a number of subroutines
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Additional Additional PreinitPreinit ServicesServices……

�Managing the Preinit Table

�add_entry: Dynamically add a routine to an environment

�delete_entry: Delete an entry from the Preinit table, 
making it available to a later add_entry

�Extracting Information from an Environment

�identify_environment: Determine characteristics of a 
Preinit environment

�identify_entry: Identify the language of an entry in the 
Preinit table

�identify_attributes: Identify the attributes of an entry in 
the Preinit table
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init_sub,
init_sub_dp call_main

call_sub or 
call_sub_addr 
ended with STOP 
semantics

term for "clean" 
init_sub or 
init_sub_dp 
environment term

CEEBXITA (enclave 
init) x x x(next call)
CEEBINT
(HLL exit) x x x(next call)
C atexit() functions

x x x
CEEBXITA
(enclave term) x x x
CEEBXITA
(process term) x x

User Exit InvocationUser Exit Invocation

�Main environments: CEEBXITA and CEEBINT application-specific user exits are 
taken from the main routine being called.

� Sub environments: CEEBXITA and CEEBINT application-specific user exits are 
taken from the first entry in Preinit table.

�All other occurrences are ignored!
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XPLINK XPLINK PreinitPreinit

�Preinit applications can run XPLINK-compiled 
programs in a Preinit environment.

�LE initializes either an XPLINK environment or a 
"regular" (non-XPLINK) environment

�Main: XPLINK environment if routine in first Preinit
Table entry is XPLINK

�Subroutine: XPLINK environment if routine in first 
Preinit Table entry is XPLINK, or if XPLINK(ON) 
run-time option is specified
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XPLINK XPLINK PreinitPreinit......

�call_main may cause an environment switch

�If running a non-XPLINK environment, and either the 
program was compiled XPLINK or XPLINK(ON) was 
specified, the environment will be rebuilt XPLINK, 
and remain that way.

�Sub environments do not switch

�A call to an XPLINK subroutine in a non-XPLINK 
environment will result in a “mismatch” error.

�Recommendation: Do not use non-XPLINK 
routines in an XPLINK Preinit environment.
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Service routinesService routines

�Under Preinit, you can specify several service routines for use with 
running a main routine or subroutine in the preinitialized environment 

�To use the routines, specify a list of addresses of the routines in a service 
routine vector

�Pass the address of this list on the init_main, init_sub, or init_sub_dp interfaces

�The service_rtns parameter that you specify contains the address of the vector 
itself

�If this pointer is specified as zero (0), LE routines are used instead of the 
service routines

�Why?

�Execution environment has its own storage or program management services

•Now supported in AMODE 64 Language Environment

�z/OS V1.9: @Load and @Delete service routines

�z/OS V1.11: @Getstore, @Freestore, and @Msgrtn service routines
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Service routines...Service routines...

�Count

�the number of fullwords that follow

�User Word

�passed to the service routines

�provides a means for your routine to communicate to the 
service routines

�@Workarea

�address of a work area of at least 256 bytes that is doubled 
word aligned.  First word contains the length of area provided. 
Required if service routines present in vector

�@Load

�loads named routines for application management

�@Delete

�deletes routines for application management



43SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Service routines...Service routines...

�@Getstore

�allocates storage on behalf of the storage manager.  This 
routine relies on the caller to provide a save area, which can 
be the @Workarea

�@Freestore

�frees storage on behalf of storage manager

�@Exceprtn

�traps program interrupts and abends for condition 
management

�@Msgrtn

�allows error messages to be processed by caller of the 
application
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PreinitPreinit DiagnosticsDiagnostics

�Preinit Trace Table

�IPCS Support to format Preinit control blocks 
and trace table
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PreinitPreinit DiagnosticsDiagnostics……

•Preinit Trace Table Characteristics

�Tracing is always active

•Begins when the Preinit environment is 
initialized and ends when the environment is 
terminated

�Trace is kept in an in-storage trace table

•Fixed size (4096 bytes)

•Wraps when the end has been reached
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PreinitPreinit DiagnosticsDiagnostics……

•New keyword for the LEDATA IPCS Verbexit:

�PTBL(value) - Formats Preinit control block and trace 
table based on value:

•"CURRENT“ - Preinit data associated with the 
current or specified TCB  is displayed.

•<address> - Preinit data at that address is displayed. 

•“*“ – Data for all active and dormant Preinit
environments within the current address space are 
displayed; *** This option is time-consuming ***.

•"ACTIVE“ – Display Preinit data associated with each 
TCB in the address space.
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PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Control Block

=== > VERBEXIT LEDATA ‘PTBL(CURRENT)’

PreInitialization Programming Interface Trace Data

CEEPIPI Environment Table Entry and Trace Entry :

Active CEEPIPI Environment (  Address 25805CB0 )

Eyecatcher : CEEXIPTB

TCB address : 008D1B08

CEEPIPI Environment :

Non-XPLINK Environment

Environment Type : MAIN

Sequence of Calls not active

Exits not established

Signal Interrupt Routines not registered

Service Routines are not active

CEEPIPI Environment Enclave Initialized

Number of CEEPIPI Table Entries = 2
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PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Control Block…

CEEPIPI Table Entry Information :

CEEPIPI Table Index 0  ( Entry 1   )

Routine Name  = HLLCRTN

Routine Type  = C/C++

Routine Entry Point  = A5810B38

Routine Function Pointer  = A5810CC0

Routine Entry is Non-XPLINK

Routine was loaded by Language Environment

Routine Address was resolved

Routine Function Descriptor was valid

Routine Return Code    = 0

Routine Reason Code    = 0
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PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Control Block…

Entry of routine in CEEPIPI Table for Index 0 ( 25805DB8 )

+000000 25805DB8  A5810CC0 25811B30 80000000 00000000

00000000 00000000 00000000 00000000

|va...a..........................|

+000020 25805DD8  00000000 00000000 00000000 A5810B38  

00000003 258117C8 00000003 25810B38 

|............va.......a.H.....a..|

+000040 25805DF8  A5810B38 000014C8 C8D3D3C3 D9E3D540  

00000000 00000000 00000000 00000000

|va.....HHLLCRTN ................|

CEEPIPI Table Index 1  ( Entry 2   )  not in use.
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PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Trace Table

CEEPIPI Trace Table Entries :

Call Type =  INIT_MAIN

PIPI Driver Address  = A5800A82

Load Service Return Code   = 0

Load Service Reason Code   = 0

Most Recent Return Code    = 0

Most Recent Reason Code    = 0

An ABEND will be issued if storage can not be obtained

PreInit Environment will not allow EXEC CICS commands

Service RC = 0 :A new environment was initialized
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PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Trace Table…

Call Type =  ADD_ENTRY

Routine Table Index        = 1

Routine Name  = HLLPIPI

Routine Address = A5812E20

Load Service Return Code   = 0

Load Service Reason Code   = 3

Service RC = 0 :The routine was added to the PreInit table.

Call Type =  CALL_MAIN

Routine Table Index     = 1

Enclave Return Code     = 0

Enclave Reason Code     = 0

Routine Feedback Code   = 0000000000000000

Service RC = 0 :The environment was activated and the

routine called.
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PreinitPreinit DiagnosticsDiagnostics……

LEDATA PTBL Output – Preinit Trace Table…

Call Type =  DELETE_ENTRY

Routine Table Index     = 1

Routine Name  = HLLCOBOL

Routine Address = A5812E20

Service RC = 0 :The routine was deleted from the

PreInit table.

Call Type =  CALL_MAIN

Routine Table Index     = 0

Enclave Return Code     = 0

Enclave Reason Code     = 0

Routine Feedback Code   = 0000000000000000

Service RC = 0 :The environment was activated and

the routine called.



A A PreinitPreinit ExampleExample

The following example provides an illustration of an assembler pThe following example provides an illustration of an assembler program rogram 

ASMPIPI ASSEMBLE invoking CEEPIPI to:ASMPIPI ASSEMBLE invoking CEEPIPI to:
��Initialize a LE Initialize a LE PreinitPreinit subroutine environment subroutine environment 

��Load and call a reentrant C/COBOL/PLI subroutineLoad and call a reentrant C/COBOL/PLI subroutine
��Terminate the LE Terminate the LE PreinitPreinit environmentenvironment
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�Following the assembler program are interchangeable 
examples of the program HLLPIPI written in:
�C, COBOL, and PL/I 

�HLLPIPI is called by an assembler program, ASMPIPI.

�ASMPIPI uses the Language Environment preinitialized 
program subroutine call interface 

�You can use the assembler program to call the HLL 
versions of HLLPIPI.

ExampleExample
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*

*COMPILATION UNIT: LEASMPIP

***********************************************************************

*                                                               *

* Function: CEEPIPI - Initialize the Preinitialization                *

*                    environment,call a Preinitialization       *

*                    HLL program,and terminate the environment. *

*                                                               *

* 1. Call CEEPIPI to initialize a subroutine environment under LE.    *

* 2. Call CEEPIPI to load and call a reentrant HLL subroutine.  *

* 3. Call CEEPIPI to terminate the LE Preinitialization environment.  *

*                                                               *

* Note: ASMPIPI is not reentrant.                               *

*                                                               *

***********************************************************************

Example...Example...
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* =======================================

* Standard program entry conventions.

* =======================================

ASMPIPI  CSECT

STM   R14,R12,12(R13) Save caller’s registers

LR    R12,R15 Get base address

USING ASMPIPI,R12 Identify base register

ST    R13,SAVE+4 Back-chain the save area

LA    R15,SAVE Get addr of this routine’s save area

ST    R15,8(R13) Forward-chain in caller’s save area

LR    R13,R15 R13 -> save area of this routine

*

* Load LE CEEPIPI service routine into main storage.

*

LOAD  EP=CEEPIPI Load CEEPIPI routine dynamically

ST    R0,PPRTNPTR Save the addr of CEEPIPI routine

Example...Example...
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*

* Initialize an LE Preinitialization subroutine environment.

*

INIT_ENV EQU   *

LA    R5,PPTBL Get address of Preinit Table

ST    R5,@CEXPTBL Ceexptbl_addr ->Preinit Table

L     R15,PPRTNPTR Get address of CEEPIPI routine

* Invoke CEEPIPI routine

CALL  (15),(INITSUB,@CEXPTBL,@SRVRTNS,RUNTMOPT,TOKEN)

* Check return code:

LTR   R2,R15 Is R15 = zero?

BZ    CSUB Yes (success)..go to next section

* No (failure)..issue message

WTO   ’ASMPIPI: call to (INIT_SUB) failed’,ROUTCDE=11

C     R2,=F’8’ Check for partial initialization

BE    TSUB Yes..go do Preinit termination

* No..issue message & quit

WTO   ’ASMPIPI: INIT_SUB failure RC is not 8.’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

Example...Example...
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*

* Call the subroutine, which is loaded by LE

*

CSUB     EQU   *

L     R15,PPRTNPTR Get address of CEEPIPI routine

CALL  (15),(CALLSUB,PTBINDEX,TOKEN,PARMPTR,              X

SUBRETC,SUBRSNC,SUBFBC)

* Check return code:

LTR   R2,R15 Is R15 = zero?

BZ    TSUB Yes (success)..go to next section

* No (failure)..issue message & quit

WTO   ’ASMPIPI: call to (CALL_SUB) failed’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

Example...Example...
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*

* Terminate the environment

*

TSUB     EQU   *

L     R15,PPRTNPTR Get address of CEEPIPI routine

CALL  (15),(TERM,TOKEN,ENV_RC)

* Check return code:

LTR   R2,R15 Is R15 = zero ?

BZ    DONE Yes (success)..go to next section

* No (failure)..issue message & quit

WTO   ’ASMPIPI: call to (TERM) failed’,ROUTCDE=11

ABEND (R2),DUMP Abend with bad RC and dump memory

*

* Standard exit code.

*

DONE     EQU   *

LA    R15,0 Passed return code for system

L     R13,SAVE+4 Get address of caller’s save area

L     R14,12(R13) Reload caller’s register 14

LM    R0,R12,20(R13) Reload caller’s registers 0-12

BR    R14 Branch back to caller

Example...Example...
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* =====================================================================

* CONSTANTS and SAVE AREA.

* =====================================================================

SAVE       DC    18F’0’

PPRTNPTR DS    A Save the address of CEEPIPI routine

*

* Parameters passed to an (INIT_SUB) call.

INITSUB DC    F’3’ Function code to initialize for subr

@CEXPTBL DC    A(PPTBL) Address of Preinitialization Table

@SRVRTNS DC    A(0) Addr of service-rtns vector,0 = none

RUNTMOPT DC    CL255’’ Fixed length string of runtime optns

TOKEN DS    F Unique value returned(output)

*

* Parameters passed to a (CALL_SUB) call.

CALLSUB DC    F’4’ Function code to call subroutine

PTBINDEX DC    F’0’ The row number of Preinit Table entry

PARMPTR DC    A(0) Pointer to @PARMLIST or zero if none

SUBRETC DS    F Subroutine return code (output)

SUBRSNC DS    F Subroutine reason code (output)

SUBFBC DS    3F Subroutine feedback token (output)

Example...Example...
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*

* Parameters passed to a (TERM) call.

TERM     DC    F’5’ Function code to terminate

ENV_RC   DS    F Environment return code (output)

* =====================================================================

* Preinitialization Table.

* =====================================================================

*

PPTBL    CEEXPIT , Preinitialization Table with index

CEEXPITY HLLPIPI,0 0=dynamically loaded routine

CEEXPITS , Endof PreInit table

*

LTORG

R0       EQU   0

R1       EQU   1

...

R14      EQU   14

R15      EQU   15

END   ASMPIPI

Example...Example...
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Example...Example...

#include <stdio.h>

HLLPIPI ()

{

printf("C subroutine beginning \n");

printf("Called using LE PreInit call \n");

printf("Subroutine interface.\n");

printf("C subroutine returns to caller \n");

}

C Subroutine Called by ASMPIPI



63SHARE in Boston, August 2010 - Copyright IBM Corp. 2001, 2010

Example...Example...

CBL LIB,QUOTE

*Module/File Name: IGZTPIPI

***********************************************************

*                                                         *

* HLLPIPI is called by an assembler program, ASMPIPI.     *

* ASMPIPI uses the LE preinitialized program              *

* subroutine call interface. HLLPIPI can be written       *

* in COBOL, C, or PL/I.                                   *

*                                                         *

***********************************************************

IDENTIFICATION DIVISION.

PROGRAM-ID. HLLPIPI.

DATA DIVISION.

WORKING-STORAGE SECTION.

PROCEDURE DIVISION.

DISPLAY "COBOL subprogram beginning".

DISPLAY "Called using LE Preinitialization".

DISPLAY "Call subroutine interface.".

DISPLAY "COBOL subprogram returns to caller.".

GOBACK.

COBOL Program Called by ASMPIPI
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Example...Example...

/*Module/File Name: IBMPIPI                               */

/**********************************************************/

/*                                                        */

/* HLLPIPI is called by an assembler program, ASMPIPI.    */

/* ASMPIPI uses the LE preinitializedprogram              */

/* subroutine call interface.HLLPIPI can be written       */

/* in COBOL,C,or PL/I.                                    */

/*                                                        */

/**********************************************************/

HLLPIPI: PROC OPTIONS(FETCHABLE);

DCL RESULT FIXED BIN(31,0)INIT(0);

PUT SKIP LIST

(’HLLPIPI: PLI subroutine beginning.’);

PUT SKIP LIST

(’HLLPIPI: CalledLE Preinit Call ’);

PUT SKIP LIST

(’HLLPIPI: Subroutine interface.’);

PUT SKIP LIST

(’HLLPIPI: PLI program returns to caller.’);

RETURN;

END HLLPIPI;

PL/I Routine Called by ASMPIPI
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Sources of Additional InformationSources of Additional Information

�LE Debug Guide and Runtime Messages

�LE Programming Reference

�LE Programming Guide (64-bit too!)

�LE Customization

�LE Migration Guide

�LE Writing ILC Applications

�Web site

�http://www.ibm.com/servers/eserver/zseries/zos/le/


