
1

IBM Systems and Technology Group (STG)

© Copyright International Business Machines Corporation 2010.

New z/Architecture Instructions
that Can Save You Time & Effort

Dan Greiner
dgreiner@us.ibm.com
z/Server Architecture
SHARE 115 in Boston

2 August 2010

Note: This is a PowerPoint presentation which contains a significant amount of animation to help
illustrate the concepts described. SHARE proceedings are usually restricted to Adobe portable-
document-format (.pdf) files. If you would like a copy of the original PowerPoint slide show, please
see me after the session or send me an email at the address on the cover page.

2

2SHARE 115

The Legal Stuff

Trademarks:
► The following terms are trademarks of the International Business Machines Corporation in the United States,

other countries, or both:
– ESA/390
– IBM
– z/Architecture
– z/OS
– z/VM

► IEEE is a trademark of the Institute of Electrical and Electronics Engineers, Inc. in the United States, other
countries, or both.

► Linux is a registered trademark of Linus Torvalds in the United States, other countries or both.
► Unicode is a registered trademark of Unicode, Incorporated in the United States, other countries, or both.
► Other trademarks and registered trademarks are the properties of their respective companies.

All information contained in this document is subject to change without notice. The products described in
this document are not intended for use in applications such as implantation, life support, or other
hazardous uses where malfunction could result in death, bodily injury or catastrophic property damage.
The information contained in this document does not affect or change IBM product specifications or
warranties. Nothing in this document shall operate as an express or implied license or indemnity under the
intellectual property rights of IBM or third parties. All information contained in this document was obtained
in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.
While the information contained herein is believed to be accurate, such information is preliminary, and
should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy
or completeness are made.
The information in contained in this document is provided on an “AS IS” basis. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

© Copyright International Business Machines Corporation 2010. Permission is granted to SHARE, Inc. to
publish this presentation in the proceedings of SHARE 115.

3

3SHARE 115

CPU Facilities Added Since Original z/Architecture:
FP-Support-Sign-Handling

FPR-GR-Transfer

General-Instructions-Extension

Long-Displacement

MSA, MSA-X1 & MSA-X2

Move With Optional Specifications

Parsing-Enhancement

Store-Clock-Fast

Store-Facility-List-Extended

TOD-Clock-Steering

HFP-Multiply and-Add

HFP-Unnormalized-Extension

IEEE-Exception-Simulation

Compare-and-Swap-and-Store

Conditional-SSKE

Configuration-Topology

DAT-Enhancement 1 & 2

Decimal-Floating-Point

Decimal-Floating-Point-Rounding

Enhanced-DAT

ETF2 & ETF3-Enhancement

Execute-Extensions

Extended-Immediate

Extended-Translation 2 & 3

Extract-CPU-Time

ASN-and-LX-Reuse

This slide lists the major CPU facilities that have been added to z/Architecture since its introduction in
2000. Many of these facilities are targeted to improving performance, but in the period of a one-hour
SHARE presentation, we will not have the time to address all of these facilities (it is also doubtful
whether the attention span of the audience would endure a full presentation).

If you are interested in additional details on facilities that are not discussed in this presentation, there
are two presentations from SHARE 113 that provide a review of all of the new CPU facilities:

1. Session 1290 – Additions to z/Architecture

2. Session 1291 - Additions to z/Architecture in the IBM System z10 Enterprise Class

Some material from those presentations has been incorporated into this presentation.

4

4SHARE 115

Store-Facility-List-Extended (1)

Original z/Architecture provided the STORE FACILITY LIST
(STFL) instruction

►STFL stores a list of facility bits at real location 200 (C8 hex)

►STFL is a privileged operation (supervisor state)

►STFL’s results are inaccessible unless the O/S maps real
frame 0 to a virtual page

– Z/OS does
– Linux doesn’t

►STFL’s results are limited to 32 facilities (one word)
–Potentially extendable to 3 words in ESA/390; 8 words in z/Arch

Before discussing particular facilities, it would be worth spending some time on how to determine if a
facility is installed.

The original STORE FACILITY LIST (STFL) instruction has several limitations:

Only 32 facility bits are supported.

The results are placed in real storage location 200 (C8 hex). Although z/OS maps real page 0 in a
V=R manner, Linux does not.

STFL is a privileged instruction.

Thus, for environments such as Linux, a costly system call is required to determine what hardware
facilities are available.

5

5SHARE 115

Store-Facility-List-Extended (2)

Introduced in the System z9-109

General instruction (problem state)

Stores the results in a program-specified location (2nd operand)

Up to 16,384 facilities may be indicated

► GR0 designates number of doublewords that the program supplied for results

► Condition code indicates whether list fits in the program-specified block

► GR0 updated to indicate number of doublewords needed to accommodate
entire result

STFLE maps the first 32 facilities the same as STFL

► z/OS uses STFLE to store extended results at real location 200 (C8 hex)

STFLE D2(B2) [S]

‘B2B0’ B2 D2

0 16 20 31

STFLE is a general instruction, thus any application can execute it.

The results are stored in a program-specified location.

Up to 16K of facility indications may be indicated (256 doublewords; 1 bit per facility indication).

The first 32 facility indications are identical to that provided by STFL.

z/OS continues to store facility indications at location 200, but now it uses STFLE instead of STFL.
Thus facilities 32 and above may be indicated in real locations 204 and up, such that the z/OS
application does not need STFLE at all.

6

6SHARE 115

Store-Facility-List-Extended (3)

Facility indications stored by STFLE (or STFL)

Extended-immediate21

Config.-topology11

Enhanced-DAT8

HFP Multiply-and-Add/Subtract20
Long displacement high perf.19
Long displacement18
Message-security assist17
Extended-translation 216

Conditional-SSKE10
Sense-running-status9

Store-facility-list-extended7
ASN-and-LX-reuse6
IDTE selective region clearing5
IDTE selective segment clearing4
DAT-enhancement3
z/Architecture active2
z/Architecture installed1
“N3” instructions installed0
MeaningBit

Extended-translation 322

Execute-extensions35*
Gen.-instructions enhancement34*
CSST-233*

Parsing-enhancement26

* Note, STFL cannot store beyond bit 31.
Perform-floating-point-operation44*
DFP high performance43*
Decimal-floating-point42*
FP-support-enhancements41*

Compare-and-swap-and-store32*
Extract-CPU-time31
ETF3-enhancement30
TOD-clock steering28
Move-with-opt.-specifications27

Store-clock-fast25
ETF2-enhancement24
HFP-unnormalized-ext.23

MeaningBit

This slide enumerates the currently-defined facility bits, as stored by the STFL or STFLE instructions.
Note, STFL is now deprecated, as it can only store the first 32 facility indications.

A program that needs to examine facility indications should execute STFLE (or STFL) only once!
Subsequent examination of the facility indications should be done via bit testing instructions such as
TEST UNDER MASK (TM), using the program’s own copy of the bits stored by STFLE.

In the case of z/OS, the operating system uses STFLE to store the facility indications beginning at
real location 200 (C8 hex) – the same place that STFL stores the first 32 facility indications. z/OS
maps this location to the equivalent virtual address in address spaces from which instructions can be
executed (i.e., primary or home).

Obviously, if your program is going to be run only on a processor in which a facility is known to be
installed, then you do not need to test for its presence.

7

7SHARE 115

Long-Displacement Facility (1)

Traditional displacement operand provides only
12-bit unsigned value
►Lamented since the original S/360 in 1964

►12 bits limit the addressability of one base register to
4,096 bytes

►Unsigned (positive) displacement only

►Necessitates base-register management (thrashing) in
larger programs

– Nonproductive cycles saving/restoring

Ever since programmers started writing assembler-language code for the System 360, a common
complaint has been that the 12-bit unsigned displacement provided by common storage-accessing
instructions is insufficient. The 12-bit displacement field allows only a positive offset of up to 4,095
bytes.

This means that for larger programs, a single base register is inadequate, necessitating a second (or
third [or fourth]) register be committed as a program base. This issue affects not only the code, but
also any data areas that may exceed 4K.

The 4K limitation puts pressure on the 16 general-purpose registers. For some programs, a
significant amount of code – and execution cycles – are devoted to register management. Compared
to an architecture that has more registers, the register-management operations are unproductive
cycles, wasted to accommodate a limited architecture.

8

8SHARE 115

Long-Displacement Facility (2)

ESA/390 introduced the RXE-format opcode:
►RXE added with the binary-floating-point feature

►Two-byte opcode split between the first and last byte
of the instruction

RXE (and RSE) used extensively to implement
z/Architecture opcodes (e.g., 64-bit instructions)
►Bits 32-39 of the instruction reserved in the new

formats

/ / / / / / / /OpCode R1 X2 B2 D2

80 12 16 20 31

OpCode

32 40 47

The binary floating-point facility in ESA/390 introduced the RXE instruction format. Bits 8-31 of the
RXE format provide the same register, base, index, and displacement fields as the RX format,
however the opcode is 16 bits – split between the first and last bytes of the instruction. Bits 32-39 of
the instruction are reserved.

With the advent of z/Architecture, the RS instruction format was similarly extended to form the RSE
format. The RSE and RXE instruction formats were used extensively in implementing the new 64-bit
architecture.

9

9SHARE 115

Long-Displacement Facility (3)

Added in the System z900 GA2

► High-performance version added in System z990 / z890

Extends 12-bit unsigned displacement to 20-bit signed
displacement:

► RSY:

► RXY:

► SIY:

OpCode R1 R3 B2 D2 / / / / / / / / OpCode
80 12 16 20 32 40 47

DL2 DH2

OpCode R1 X2 B2 D2 / / / / / / / / OpCode
80 12 16 20 32 40 47

DL2 DH2

OpCode I2 B1 D1 / / / / / / / / OpCode
80 16 20 32 40 47

DL2 DH2

The long-displacement facility builds upon the RSE and RXE instruction formats introduced in
z/Architecture. The new RSY and RXY instruction formats have all of the same fields as the RSE and
RXE instructions, but with an additional field occupying the previously-reserved bits 32-39. A new
SIY format, a long-displacement analog to the SI format, is also introduced.

10

10SHARE 115

Long-Displacement Facility (4)

Operand displacement-low field (DL)
concatenated with displacement-high field (DH)
►Forms 20-bit signed displacement

►Bit 32 of the instruction is the displacement’s sign bit

OpCode R1 R3 B2 DL2 DH2 OpCode
80 12 16 20 32 40 47

20-Bit Signed Displacement

Prior to the long-displacement facility, the displacement field in an instruction was a 12-bit unsigned
field, providing a displacement range from 0-4,095 bytes.

The new formats contain a 20-bit signed displacement, thus providing a positive or negative
displacement of 512K.

Bits 32-39 of the instruction form the displacement high (DH) field that provides the most-significant
bits of the displacement. Bit 32 is the sign bit.

The DH field, concatenated with the displacement low field (DL, that is, the classic 12-bit
displacement in bits 20-31) form the 20-bit signed value.

11

11SHARE 115

Long-Displacement Facility (5)

All RSE- and RXE-format instructions with primary opcode of E3
and EB hex changed to RSY and RXY format, respectively

► 69 z/Architecture instructions converted (64-bit operations)

► Floating-point ops not converted

► Decimal ops not converted

► No change to mnemonics!

45 New RSY, RXY, and SIY-format instructions

► Most extend ESA/390-compatible 32-bit instructions

► Mnemonic suffixed with “Y” to indicate long displacement

► Examples:
– “LY” is analog to “L”
– “LMY” is analog to “LM”
– “MVIY” is analog to “MVI”

A significant number of the z/Architecture RSE and RXE instructions (that is, those that provided 64-
bit support) were converted to long displacement (RSY and RXY format). Instruction-level
compatibility for programs developed using 12-bit displacements is assured, since HLASM will
generate zeros for the reserved fields.

Decimal and floating-point operations were not converted to long displacement.

New instructions were defined to provide long-displacement analogs for most of the 32-bit RS, RX,
and SI instructions (that is, those ported to z/Architecture from ESA/390). The letter “Y” was
appended to the mnemonic to indicate the long-displacement form. For example, the 32-bit LOAD
includes both L and LY.

12

12SHARE 115

Long-Displacement Facility (6)

Advantages of long displacement

► Reduce the number of base registers required to address data
– And reduces base-register-management operations
– Single base register maps up to 1,048,576 bytes (-524,288 to +524,287)

► Allows for non-zero-based structures
– Structures with prefix
– Certain stack models

► Opportunity for significant performance improvement
– Packing chained structured together
– Reduced address-generation interlocks (AGIs)

WARNING: Performance of long-displacement facility on Z800 & Z900 is
suboptimal!

► Facility bit 18: Long-displacement is installed (z800 & z900)

► Facility bit 19: Long-displacement has high performance (z990 & z890)

There are numerous potential advantages to using the long-displacement facility:

•The 12-bit displacement has been the bane of assembler programmers not long after the
introduction of the S/360. Code that follows chains of pointers from a base structure to extension
controls blocks can (conceivably) be redesigned to consolidate such linked control structures.

•Certain control structures are not zero based. The long displacement provides an easy means of
pointing a register at the nominal base on the structure, allowing the prefix portion to be referenced
using a negative displacement.

However there are some potential drawbacks. The facility was first introduced with the z990
processors, where all of the facility is implemented in hardware. However, the facility was retrofit to
the z800 and z900 systems, where it is implemented in Millicode. There are two separate facility
indications for long displacement: the first indicates the presence of the facility, and the second
indicates high performance.

13

13SHARE 115

Loc Object Code Addr1 Addr2 Stmt Source Statement

000000 00000 00038 2828 TESTCASE CSECT

R:0 00000 2830 USING PSA,0

000000 E310 0048 0004 00048 2831 LG R1,FLCCVT2-4

000006 9110 00CA 000CA 2832 TM FLCFACL2,FLCFLDHP

00000A A7E4 0006 00016 2833 JNO OLD_SCHOOL

R:1 00100 2834 USING CVTMAP,R1

00000E E3F0 1FD8 FF04 000D8 2835 LG R15,CVTPRODN

000014 07FE 2836 BR R14

2837 DROP R1

000016 2838 OLD_SCHOOL DS 0H

000016 A71B FF00 FFFF00 2839 AGHI R1,-256

R:1 00000 2840 USING CVTFIX,R1

00001A E3F0 10D8 0004 000D8 2841 LG R15,CVTPRODN

000020 07FE 2842 BR R14

Long-Displacement Facilty (7)
Example: Prefixed Structure

Note,
displacement
is negative!

This slide illustrates one possible means of exploiting the long-displacement facility to provide
addressability to the prefix area of a structure, without reloading a pointer. The example is
CVTPRODN field from the prefixed portion of the z/OS communications vector table (CVT). The
prefixed portion appears at an address lower than the base pointer to the CVT.

In z/OS, various locations in the first page contain a pointer to the CVT. The most commonly used
pointer is the fullword at location 16 (10 hex). This example uses an alternate fullword pointer
(FLCCVT2) at location 76 (4C hex), however the code actually performs a 64-bit LOAD (LG) from
location 72 (48 hex), as z/OS sets locations 72-75 to zeros. On some processors, this technique may
be a cycle faster than using LOAD LOGICAL THIRTY ONE BITS (LLGT).

The TEST UNDER MASK instruction tests the facility bits that z/OS stores beginning at location 200.
If the high-performance long-displacement facility is not installed, then the code branches to the ADD
HALFWORD IMMEDIATE (AGHI) instruction which backs up the CVT pointer to its prefix. The
subsequent LOAD (LG) instruction at statement 2,841 is based on the prefix origin.

If the high-performance long-displacement facility is installed, the branch is not taken. No adjustment
of the CVT pointer is required. The LOAD (LG) instruction at statement 2,835 causes a negative
displacement to be generated.

This example is for illustrative purposes only; the overhead of testing for the long-displacement
facility exceeds that saved by not having to adjust the CVT pointer. However, in cases where multiple
accesses to a negatively displaced field occur, additional savings may be realized.

14

14SHARE 115

Long-Displacement Facilty (8)
Example: Restructuring Linked Blocks

Base Reg

Block 1

@Block2

Block3

STUFF

Block2

@Block3
@Block3

STUFF

Blocks 1-3

@Block2

Base Reg12-Bit Dispacement

LG R1,@Block1
USING Block1,R1
LG R2,@Block2
USING Block2,R2
LG R3,@Block3
USING Block3,R3
LG R4,STUFF

20-Bit Displacement

LG R1,@Block1
USING Block1,R1
LG R4,STUFF

This slide shows how linked structures might be rearranged to exploit the long-displacement facility.
Prior to the long-displacement facility, a structure that was greater than 4K in size required multiple
base registers to address it. In some cases, as shown on the left, the structure would be broken into
discontiguous sections, with pointers to the subsequent portions. Regardless of whether the structure
was contiguous or not, access to a portion of data that was not addressable by the structure’s base
pointer required subsequent loading of registers to provide addressability.

The long displacement facility provides a means by which such structures may be coalesced back
into a single, contiguous structure that can be addressed by a single base register. In the example
shown on the left of the slide, access to the data object STUFF requires two extra loads. In the long-
displacement example shown on the right, access to STUFF requires only the initial load of the
pointer to the block.

Remember that the long displacement is signed; the 20-bit displacement field provides a positive or
negative displacement of 512K.

15

15SHARE 115

Extended-Immediate Facility (1)

Added in the System z9-109

Adds numerous 32-bit immediate-operand instructions
► ADD IMMEDIATE (AFI, AGFI)
► ADD LOGICAL IMMEDIATE (ALFI, ALGFI)
► AND IMMEDIATE (NIHF, NILF)
► COMPARE IMMEDIATE (CFI, CGFI)
► COMPARE LOGICAL IMMEDIATE (CLFI, CLGFI)
► EXCLUSIVE OR IMMEDIATE (XIHF, XILF)
► INSERT IMMEDIATE (IIHF, IILF)
► LOAD IMMEDIATE (LGFI)
► LOAD LOGICAL IMMEDIATE (LLIHF, LLILF)
► OR IMMEDIATE (OIHF, OILF)
► SUBTRACT LOGICAL IMMEDIATE (SLFI, SLGFI)

Minimizes need for DCs or literal pool for constant values

The immediate-and-relative-instruction facility (circa 1996) introduced a number of instructions with
16-bit immediate operands, for example LOAD HALFWORD IMMEDIATE. These ESA/390
instructions became part of the base z/Architecture.

The extended-immediate facility adds several instructions with 32-bit immediate fields, performing
the basic arithmetic, logical, and comparison functions enumerated on this slide. One advantage of
having immediate operands is that once the instruction is fetched, there is no separate fetch required
for the immediate operand.

Note: The base z/Architecture provided 16-bit versions of AND IMMEDIATE and OR IMMEDIATE,
but not EXCLUSIVE OR IMMEDIATE. The extended-immediate facility provides 32-bit versions of
all of these instructions (no 16-bit exclusive-OR operation is needed).

16

16SHARE 115

Extended-Immediate Facility (2):

Adds numerous miscellaneous instructions
► FIND LEFTMOST ONE (FLOGR)
► LOAD AND TEST (LT, LTG)

– Adds RXE-format to existing RR- and RRE-formats.
► LOAD BYTE (LBR, LGBR)

– Adds RRE format to existing LB and LGB
► LOAD HALFWORD (LHR, LGHR)

– Adds RRE format to existing LH and LGH
► LOAD LOGICAL CHARACTER (LLC, LLCR, LLGCR)

– Adds 32-bit RXY-format, and 32- and 64-bit RRE-formats
► LOAD LOGICAL HALFWORD (LLH, LLHR, LLGHR)

– Adds 32-bit RXY-format, and 32- and 64-bit RRE-formats
Advantages:
► Fewer storage references
► Smaller code image

The extended-immediate facility also includes several other non-immediate-related instructions, as
enumerated on this slide.

FIND LEFTMOST ONE returns the bit position of the leftmost 1 bit in a register, and the original
operand with the leftmost 1 bit turned off in another register. It is particularly useful in manipulating
bit maps.

LOAD AND TEST (LT, LTG) provide for the loading from storage and testing of a value. It is similar
to the combination of L/LT (or LG/LTG), but in a single instruction. Note, ICM is not truly equivalent,
as it provides neither an index register nor support of 64-bit values.

The extended-immediate facility potentially improves code performance by reducing storage
references (having an immediate operand fetched along with the instruction). The additional
instructions listed on this slide provide additional utility in a single instruction, combining what
previously might take multiple instructions to provide equivalent function.

The following slides highlight some of the instructions in the facility, showing the advantages of using
them as compared to equivalent earlier instructions.

17

17SHARE 115

Extended-Immediate Facility (4)
Example: ADD with Extended Immediate

32-bit signed integer in I2 field added to general
register R1; result replaces R1

►Condition code set as with normal add instructions

AGFI R2,-12345678SG R2,=FD’12345678’

With Extended ImmediateWithout Extended Immediate

‘C2’ R1 ‘8’ I2
80 12 47

AGFI R1,I2 [RIL]

16

Extra storage access
Extra 8 bytes of data

This slide shows the ADD IMMEDIATE (AGFI) instruction. AGFI is similar to ADD HALFWORD
IMMEDIATE (AGHI), except that the second operand of AGFI is 32 bits, whereas the second
operand of AGHI is a halfword.

In the comparison at the bottom of the slide, the difference is not immediately obvious – both the
SUBTRACT (SG) and the AGFI are a single instruction. Because AGFI adds a signed value, it can
also serve as a subtract operation by having the second operand be negative. The advantage of
AGFI is that the second operand is fetched as a part of the instruction! There is additional program
space required for the second-operand constant (shown on the left as a literal), and there is no need
to fetch a separate second operand during execution.

Depending on the storage-access characteristics of the program, the immediate operand can have a
significant performance advantage.

18

18SHARE 115

Extended-Immediate Facility (5)
Example: LOAD AND TEST from Storage

Second operand fetched into general register R1

►Condition code set as with normal LOAD AND TEST
►Unlike ICM, provides index register and 64-bit result

LTG R3,456(R7,R8)LG R3,456(R7,R8)
LTGR R3,R3

With Extended ImmediateWithout Extended Immediate

Extra instruction

LTG R1,D2(X2,B2) [RXY]

‘E3’ R1 X2 B2 DL2 DH2 ’02’
80 12 16 20 32 40 47

The slide illustrates the LOAD AND TEST instruction with a storage operand.

In some circumstances, the traditional LOAD/LOAD AND TEST sequence can simply be replaced
with an INSERT CHARACTER UNDER MASK (ICM). However, ICM is not equivalent to the
LOAD/LOAD AND TEST sequence for two reasons:

1. In this example, a 64-bit value is being loaded. ICM can only accommodate a 32-bit value.

2. ICM has no means of accommodating an index register (as is used in this example).

19

19SHARE 115

Extended-Immediate Facility (6)
Example: LOAD HALFWORD (Register to Register)

Bits 48-63 of general register R2 loaded into
general register R1

► Sign extended into bits 0-47 of general register R1

LGHR R1,R1SLLG R1,R1,48
SRAG R1,R1,48

With Extended ImmediateWithout Extended Immediate

Extra instruction

LGHR R1,R2 [RRE]

‘B907’ R1/ / / / / / / /
0 16 24 3128

R2

The third example shows the isolation of bits 48-63 of a signed value in a register, where the sign is
propagated to the rightmost bits.

Without the extended-immediate facility, two shift operations are required.

1. The first logically shifts the rightmost 16 bits to the left of the register.

2. The second arithmetically shifts the 16 bits back to the rightmost bits of the register, propagating
the sign.

The register-to-register form of LOAD HALFWORD does this operation in a single instruction.

20

20SHARE 115

Extended-Immediate Facility (7)
Example: LOAD LOGICAL CHARACTER (Reg. to Reg.)

Bits 56-63 of general register R2 loaded into
general register R1

► Zeros placed into bits 0-55 of general register R1

LLGCR R5,R6LGR R5,R6
XG R5,=X'00000000000000FF'

With Extended ImmediateWithout Extended Immediate

Extra storage access
Extra 8 bytes of data

LLGCR R1,R2 [RRE]

‘B984’ R1/ / / / / / / /
0 16 24 3128

R2

Can copy character
to different register

The fourth example shows a simple isolation of bits 56-63. All other bits in the register are set to
zeros.

For the purposes of this example, we want to retain the original value in general register 6. In the
example on the left, an extra instruction is required to perform the copy, whereas LLGCR
accomplishes this feat in one instruction.

To avoid the storage reference shown in the left example, some programmers may use a pair of
logical shift instructions (similar to the technique used on the previous slide). However the register-to-
register LOAD LOGICAL CHARACTER instruction effects the isolation of the rightmost byte in a
single instruction, without a storage reference.

21

21SHARE 115

Extended-Immediate Facility (8)
Example: FIND LEFTMOST ONE

General register R2 scanned left to right for the first
(leftmost) one bit
R1 field designates even/odd general register pair
► Bit position of the leftmost 1 bit in general register R2 placed

in general register R1 (even-numbered register)
– Or 64 if no 1 bit found

► Contents of general register R2, with leftmost 1 bit set to
zero, is placed in general register R1 + 1 (odd-numbered
register)

Condition code indicates whether nonzero bit found
► CC0 – All bits in R2 are zero
► CC2 – Found leftmost 1 bit

FLOGR R1,R2 [RRE]

‘B983’ R1/ / / / / / / /
0 16 24 3128

R2

FIND LEFTMOST ONE (FLOGR) is an extremely powerful instruction that can be used for a variety
of bit-manipulation operations.

The instruction identifies the numeric bit position of the first 1 bit in the second-operand register,
placing the result in the even-numbered register of the first operand. The second operand, with the
leftmost one bit set to zero, is placed in the odd-numbered register of the first operand.

The z/Architecture Principles of Operation (SA22-7832) contains an example of the use of FLOGR in
Appendix A.

22

22SHARE 115

Extended-Immediate Facility (9)
Example: FIND LEFTMOST ONE

FLOGR R2,R4* Input in R4
LLIHH R0,X’8000’
LGHI R3,64

LOOP LGR R1,R0
NGR R1,R4
JNZ DONE
SRLG R0,R0,1
JCT R3,LOOP

DONE IPM R0
LGHI R2,64
SGR R2,R3
LGR R3,R4
XGR R3,R1
NILH R0,X’3000’
SLL R0,1
SPM R0

With Extended ImmediateWithout Extended Immediate

Yeah, right!
Extra registers,

lots more instructions,
looped code, CC setting,

Aarrrrgh!

See example in Appendix A of the PoO

This left of this slide shows a sequence of instructions that would otherwise be required to implement
the FIND LEFTMOST ONE operation shown on the right.

To perform the FLOGR function, this code on the left may need to loop up to 64 times. The final
portion of the sequence is needed to set the condition code compatibly with that of FIND LEFTMOST
ONE. Additionally, this sequence alters extra registers (0 and 3) that the FLOGR instruction do not.

On a System z9, FLOGR performs all these operations in 3 machine cycles!

23

23SHARE 115

Move-with-Optional-Specifications Facility (1)

MVCOS provides “über” MOVE CHARACTER

►True length specified in a register (no need for EXECUTE)

►Moves up to 4,096 bytes in one execution

►Moves from any address-space control (ASC) to any other

►Moves from any key to any other

►Key and ASC for source and destination may be explicitly
specified or use current-PSW values

►May be faster than MOVE LONG for 4K-byte moves, but …

►Will likely be slower than executed MVC for < 256-byte move.

MOVE WITH OPTIONAL SPECIFICATIONS provides functions similar to that of MOVE TO
PRIMARY, MOVE TO SECONDARY, MOVE WITH DESTINATION KEY, MOVE WITH KEY, and
MOVE WITH SOURCE KEY – and much more.

The source and target operands are both base/displacement storage operands (sorry, short
displacement only). General register 1 contains a true length value; up to 4,096 bytes may be moved
for each execution.

General register 0 contains operand-access controls (OAC) for both the source and target operands.
The OAC contains specifications as to the storage key and address-space control (ASC) to be used
for accessing each operand. The storage key may either be that of the current PSW or that specified
in the OAC. Similarly, the address space control may be either that of the current PSW or that
specified in the OAC. When GR0 contains zero, the source and target key/ASC values come from
the PSW.

When executed in the problem state, the key specifications for both operands must be valid in the
PSW key mask (CR3.32-47).

The instruction does not perform operand-overlap checking (unlike MVCL). However, because
MVCOS performs several other authorization checks, its performance may be less than MVCL.

The instruction can specify any address-space control, however specification of AR-mode ASC is not
particularly useful. If you already have access-register capability, then any other move instruction
(e.g., MVC) can be used.

24

24SHARE 115

Move-with-Optional-Specifications Facility (2)

True length in general register R3

►Moves up to 4,096 bytes per execution

►Result indicated by condition code
–CC0 – True length <= 4,096
–CC3 – True length > 4,096

Similar to MVCP, MVCS, MVCDK, MVCSK and MVCK, except:

►Above are limited to 256 bytes; MVCOS is not.

►MVCOS available to problem-state code (subject to PSW key mask)

Similar to MVCLE, except:

►MVCOS has displacement on source / target operands

►MVCOS provides optional ASC and key specifications

MVCOS D1(B1), D2(B2),R3 [SSF]

80 12 16 20 32 40 47

‘C8’ R3 ‘0’ B1 D1 B2 D2

MOVE WITH OPTIONAL SPECIFICATIONS provides functions similar to that of MOVE TO
PRIMARY, MOVE TO SECONDARY, MOVE WITH DESTINATION KEY, MOVE WITH KEY, and
MOVE WITH SOURCE KEY – and much more.

The source and target operands are both base/displacement storage operands (sorry, short
displacement only). General register R3 contains a true length value; up to 4,096 bytes may be
moved for each execution. The condition code indicates whether the true length was greater than
4,096.

The instruction does not perform operand-overlap checking (unlike MVCL). However, because
MVCOS performs several other authorization checks, its performance may be less than MVCL.

One of the advantages of MVCOS (as opposed to MVCL or MVCLE) is that MVCOS provides a
displacement field for both the source and target operands. Another advantage is the specification of
a true length (thus avoiding all that messy executed-MVC hassle for a variable-length operand).

The instruction can specify any address-space control, however specification of AR-mode ASC is not
particularly useful: If you already have access-register capability, then any other move instruction
(e.g., MVC) can be used.

25

25SHARE 115

Move-with-Optional-Specifications Facility (3)
Examples with Length in R15:

LA R2,TARGET
LR R3,R15
LA R4,SOURCE
LR R5,R15
MVCL R2,R4

With MVCL
* When length <= 4,096:

LHI R0,0
MVCOS TARGET,SOURCE,R15

* When length > 4,096:
LHI R0,0
LA R2,TARGET
LA R3,SOURCE

LOOP MVCOS 0(R2),0(R3),R15
LAY R2,4096(,R2)
LAY R3,4096(,R3)
AHI R15,-4096
JP LOOP

LA R2,TARGET
LA R3,SOURCE

LOOP CHI R15,256
JL WRAP
MVC 0(256,R2),0(R3)
LA R2,256(,R2)
LA R3,256(,R3)
AHI R15,-256
J LOOP

WRAP AHI R15,-1
JM DONE
EX R15,MVC

DONE DS 0H
.
.
.

MVC MVC 0(0,R2),0(R3)

With MVCOSWith MVC

Basic OACs in R0
valid for any program.

Additional OAC function
possible for authorized

programs

This slide shows a comparison of techniques for moving a variable number of bytes.

The technique on the left uses an executed MOVE (MVC) instruction. If the length to be moved is
known to be less than 256 bytes, a single EXECUTE will suffice. However, if the length to be moved
exceeds 256 bytes, then the looping technique shown is necessary.

The technique in the center uses a MOVE LONG instruction. Although MVCL allows the specification
of a true length, there are several disadvantages: four registers are required for the source and target
addresses and lengths. Furthermore, unlike MVC (and MVCOS), the MVCL instruction has no
provision for specifying an operand displacement.

The techniques shown on the right shows a simple use of MVCOS in the problem state – using the
current key and address-space control in the PSW. If the length is known to be less than 4K, then a
single MVCOS is required. If the length is larger than 4K, then the operation needs to be incorporated
into a loop, as shown.

26

26SHARE 115

Move-With-Optional-Specifications Facility (4)
Operand-Access Controls

Operand-access controls (OACs) in register 0
►First-operand control in bits 32-47 of GR0
►Second-operand control in bits 48-63 of GR0

►Bits 0-3: Access-key for operand when K=1
►Bits 8-9: ASC for operand (when A=1)
►Bit 14: Key control (0=use PSW key; 1=use KEY field)
►Bit 15: ASC control (0=use PSW AS; 1=use AS field)

40 148 10 15

Key AS/ / / / / / / / K A

This slide shows the MVCOS implied operand in general register 0.

General register 0 contains operand-access controls (OACs) for both the first (target) and second
(source) operands. For each operand, the OAC contains specifications as to the storage key and
address-space control (ASC) to be used for accessing the operand. Bits 32-47 of general register 0
are the OAC for the first operand, and bits 48-63 of the register are the OAC for the second operand.

Bit 14 of each OAC is the key control (K) for the operand. When the K bit is zero, the access key in
bits 8-11 of the PSW is used. When the K bit is one, bits 0-3 of the OAC are the access key.
Similarly, bit 15 of each OAC is the address-space control (A) for the operand. When the K bit is
zero, the address-space control in bits 16-17 of the PSW is used. When the K bit is one, bits 8-9 of
the OAC are the address-space control.

Obviously, this instruction is extremely powerful, and accordingly, is subject to certain restrictions
when executed in the problem state. When executed in the problem state, the key specifications for
both operands must be valid in the PSW key mask (CR3.32-47). Other restrictions also apply.
However, if a problem-state program simply wishes to use this instruction to simply move using the
PSW key and current address space, setting GR0 to zeros works fine.

General register 0 contains operand-access controls (OAC) for both the source and target operands.
The storage key may either be that of the current PSW or that specified in the OAC. Similarly, the
address space control may be either that of the current PSW or that specified in the OAC. When
GR0 contains zero, the source and target key/ASC values come from the PSW.

27

27SHARE 115

General Instructions Extension Facility

Introduced on the System z10

Instruction categories:
►Cache cognizance
►Compare [logical] [immediate] and branch [relative]
►Compare [logical] [immediate] and trap
► Immediate second-operand field
►Relative-long second operand
►Rotate then {AND | OR | XOR | Insert} selected bits
►Miscellany

Primary motivation: PERFORMANCE!PERFORMANCE!

The general-instructions-extension facility (GIEF) was primarily developed in response to
requirements from IBM’s compiler-development organization in Toronto. As noted on this slide,
performance was the driving factor in implementing (most of) these instructions.

The 72 instructions of the GIEF are divided into several categories, based on the instructions’
characteristics. In some cases, an instruction’s category characteristics overlap – for example,
PREFETCH DATA RELATIVE LONG, which is described in the cache-cognizance category – also
has the relative-long-second-operand characteristic.

The following slides will illustrate a small sampling of the GIEF instructions.

28

28SHARE 115

General-Instructions Extension Facility:
Cache Cognizance Instructions

Second OperandFirst Operand

SizeLocationSizeLocation

Op-
Code

Mne-
monic

Instruction

16

16

64

Mask

Mask

Register

MD

MD

N/A

RL

S(20)

S(20)EB4CECAGEXTRACT CACHE ATTRIBUTE

E336PFDPREFETCH DATA

C62PFDRLPREFETCH DATA RELATIVE LONG

Explanation:

N/A Not applicable

MD Model Dependent

RL Relative-long operand; 32-bit immediate value, multiplied by two and added to the current
instruction address, provides the storage location of the operand

S(20) Storage operand addressed using base, index, and 20-bit signed displacement.

Three instructions fall into the cache-cognizance category:

EXTRACT CACHE ATTRIBUTE provides a means by which various characteristics of a CPU’s
cache(s) may be determined.

PREFETCH DATA and PREFETCH DATA RELATIVE LONG provide the means by which a storage
operand may be fetched into – or released from – a cache line.

We’ll take a look at PREFETCH DATA in the following slides.

29

29SHARE 115

PREFETCH DATA (1)

E3 B2M1

PFD M1,D2(X2,B2) [RXY]

DL2 DH2 36X2

Condition Code is Unchanged

Storage Location

Code:

1 - Prefetch for fetch access
2 - Prefetch for store or update access
6 - Release cache line from store, retain for fetch.
7 - Release cache line

All other codes reserved; reserved codes act as no-op

For PREFETCH DATA (PFD), the second-operand address designates a storage location. Depending on the
code specified in the M3 field (bits 8-11 of the instruction), one of the following actions may be requested for the
storage location:

1 -The location is to be brought into a cache line for fetch-access only.

2 -The location is to be brought into a cache line for fetch or store access.

6 -The location, potentially already in a cache line, is to be degraded from fetch-and-store access to fetch-
access only.

7 - The location, potentially already in a cache line, is to be removed from the cache.

The second operand may designate any storage location; no alignment, access, or PER-storage-alteration
exceptions are recognized. The size of a cache line may be determined by the EXTRACT CACHE ATTRIBUTE
instruction.

Codes 1 and 2 may be used in anticipation of accessing a storage location by subsequent instructions. Code 6
may be used when a storage location that was previously used for storing will subsequently be used only for
fetching. Code 7 may be used when the storage location is not anticipated to be used in the near future.

All of these codes are merely hints to the CPU as to the anticipated use of the second-operand location; the
CPU may not implement all codes, in which case the instruction acts as a no-op.

Note: significant performance degradation may occur if an inappropriate code is used, for example, code 7 is
specified, but the storage location is immediately referenced.

30

30SHARE 115

PREFETCH DATA (2)

Example: Scan a Queue of Records for a Name
► R1 points to next element on queue (zero means end of queue)
► R15 points to name to match (first byte is length of field)

LOOP LTR R2,R1 Copy record address to R2 and test for zero
JZ NOT_FOUND Zero? End of queue without match
USING RECORD,R2 Make record addressable
L R1,NEXT Point R1 to next record

IC R3,NAME Get length to compare
EX R3,CLC Compare the record name with requested
JE FOUND Equal, we’ve got a winner.
J LOOP Not equal, play it again, Sam.
…

…
RECORD DSECT Record queue element.
NEXT DS A Pointer to next element
PREV DS A Pointer to previous element.
NAME DS AL1,CL63 Name (1st byte is length of the rest).

… Other fields in the record.
RECLEN EQU *-RECORD Length of record.

PFD 1,0(,R1) Prefetch the next record

CLC CLC 0(0,R15),NAME Compare names, including length byte.

EXRL

This slide shows a sample use of the PREFETCH DATA (PFD) instruction. This example shows the
traversal of a linked list of elements which, among other things, includes a name field to be
examined.

Let’s assume that general register 1 contains the starting address of the queue element, the format of
which is described in the RECORD DSECT. Let’s also assume that general register 15 contains the
address of a variable-length name field that we’re searching for. For convenience, we’ll also assume
that the first byte of the name field contains the length of the rest of the valid data in the field.

Note: Embedding the length at the beginning of the field is a handy technique for comparison
purposes. If, for example, the name to be compared is “John Smith”, the length of the name is 10.
Thus, the name field contains 0AD196989540E29489A388 hex. The executed CLC compares both
the length byte and the name “John Smith”, so that there is no accidental match against “John
Smithson”. Having the length byte exclude itself means that there is no need to decrement the length
prior to performing the EX instruction.

First, a plug for a separate z10 facility: the execute-extension facility. If we replace the EX instruction
with an EXECUTE RELATIVE LONG (EXRL, as shown in red), then the CLC instruction can be
anywhere within 2 G-bytes of the EXRL … either before or after the EXRL.

In the sample program, note that the pointer to the next element of the queue is loaded before doing
the name comparison. This allows us to slip in a PREFETCH DATA instruction immediately
thereafter, allowing the next record of the queue to be fetched into the cache while the comparison
operation is being executed. Depending on its use, PFD can provide significant performance benefit
for applications.

Note: When comparing the name field in the record with that of the search value (addressed by
GR15), this code fragment uses the length in the current queue element. This simple example does
not address any access-exception conditions that might occur if the name length in the record
exceeds that of the searched-for name (addressed by GR15). A more robust technique may be
warranted in a real app.

31

31SHARE 115

General-Instructions Extension Facility:
Compare [Logical] [Immediate] and Branch [Relative]

Second OperandFirst Operand Branch
Location

SizeLocationSizeLocation

Op-
Code

Mne-
monic

Instruction

S(12)8Immediate32RegisterECFFCLIBCOMPARE LOGICAL IMMEDIATE AND BRANCH

S(12)8Immediate64RegisterECFDCLGIBCOMPARE LOGICAL IMMEDIATE AND BRANCH

64

32

64

32

64

32

64

32

64

32

64

32

64

32

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

Register

8

8

64

32

64

32

8

8

8

8

64

32

64

32

Immediate

Immediate

Register

Register

Register

Register

Immediate

Immediate

Immediate

Immediate

Register

Register

Register

Register S(12)ECF6CRBCOMPARE AND BRANCH

S(12)ECE4CGRBCOMPARE AND BRANCH

RelativeEC76CRJCOMPARE AND BRANCH RELATIVE

RelativeEC64CGRJCOMPARE AND BRANCH RELATIVE

S(12)ECFECIBCOMPARE IMMEDIATE AND BRANCH

S(12)ECFCCGIBCOMPARE IMMEDIATE AND BRANCH

RelativeEC7ECIJCOMPARE IMMEDIATE AND BRANCH RELATIVE

RelativeEC7CCGIJCOMPARE IMMEDIATE AND BRANCH RELATIVE

RelativeEC77CLRJCOMPARE LOGICAL AND BRANCH RELATIVE

RelativeEC65CLGRJCOMPARE LOGICAL AND BRANCH RELATIVE

RelativeEC7DCLGIJCOMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE

RelativeEC7FCLIJCOMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE

S(12)ECE5CLGRBCOMPARE LOGICAL AND BRANCH

S(12)ECF7CLRBCOMPARE LOGICAL AND BRANCH

S(12) Storage operand addressed using base, index, and 12-bit unsigned displacement.

The COMPARE AND BRANCH instructions combine a compare operation and, if the specified condition is met,
a branch operation, in a single instruction. When the specified condition is not met, execution continues with the
next sequential instruction. The bracketed terms in this slide’s title illustrate the many forms of the instruction,
providing the following characteristics:

• Numeric attribute: signed versus unsigned (top half of the table versus bottom half)

• Second-operand location: register versus immediate field (every four rows)

• Branch designation: base and 12-bit displacement versus 16-bit signed relative (every two rows)

• First operand size: 32-bit versus 64-bit (every other row)

The instructions have a rich set of operands. For the instruction formats with the comparand (second operand)
in an immediate field, there is only room for an 8-bit value. We will explore a few of these instructions in the
following slides.

32

32SHARE 115

COMPARE AND BRANCH (CRB)
(32-bit register signed operands, storage-designated branch)

M3 Mask Bit Values:
0 Equal
1 First operand low
2 First operand high
3 --

EC B4

CRB R1,R2,M3,D4(B4) [RRS]

D4 F6R1 R2 M3 ////

R1.32-63//////// //////// //////// ////////R1

R2.32-63//////// //////// //////// ////////R2

New PSW Instruction Address

Condition Code is Unchanged

?M3
TRUE

?

COMPARE AND BRANCH (CRB) compares the 32-bit signed binary integer in bits 32-63 of the first-
operand register with a 32-bit signed binary integer in the corresponding bits in the second-operand
register.

If the conditions specified by the mask field (the third operand) are true, then control branches to the
location specified by the fourth operand. The fourth operand is a storage location designated by a
base register and 12-bit unsigned displacement.

If the conditions specified by the mask field are not true, then execution continues with the next
sequential instruction.

33

33SHARE 115

COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (CLGIJ)
(64-bit register, 8-bit immediate, unsigned operands;

relative-immediate-designated branch)

Mask Bit Values:
0 Equal
1 First operand low
2 First operand high
3 --

EC

CLGIJ R1,I2,M3,I4 [RIE]

7DR1 M3 I2

Condition Code is Unchanged

?M3
TRUE

?

I20000000000000000000000000000000000000

R1.0-63R1

Current Instruction Address

+

New PSW Instruction Address

x2

I4

COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (CLGIJ) compares the 64-bit
unsigned binary integer in the first-operand register with an 8-bit unsigned binary integer in the I2 field
of the instruction, extended on the left with 56 binary zeros.

If the conditions specified by the mask field (the third operand) are true, then control branches to the
location specified by the fourth operand. The fourth operand is relative to the current instruction
address. The I4 field contains a 16-bit signed binary integer which is multiplied by two and then
added to the current instruction address (subject to addressing-mode constraints).

If the conditions specified by the mask field are not true, then execution continues with the next
sequential instruction.

34

34SHARE 115

Compare [Logical] [Immediate] and Branch [Relative]
Extended Mnemonics

Suffix coded at the end of the basic mnemonic
►E Equal
►L Low
►H High
►NE Not equal
►NL Not low
►NH Not high

Replaces the third (mask) operand, e.g.,
►CGRB R7,R8,B’1000’,Operands_Equal
►CGRBE R7,R8,Operands_Equal

For each of the COMPARE AND BRANCH (and COMPARE AND TRAP) instructions, the High Level
Assembler implements extensions to the mnemonics in lieu of the M3 field. The extensions include:

E equal M3 = 1000 binary

H high M3 = 0010 binary

L low M3 = 0100 binary

NE not equal M3 = 0110 binary

NH not high M3 = 1100 binary

NL not low M3 = 1010 binary

When the mnemonic extension is coded, the M3 field must be omitted.

35

35SHARE 115

Compare [Logical] [Immediate] and Branch [Relative]
Example: Validate a Branch Index

Given a parameter value in register 15, ensure
that it is between 4 and 16, and is a multiple of 4.

TMLL R15,X’0003’
JNZ NOT_MULTIPLE_OF_4
CGIJL R15,4,TOO_LOW
CGIJH R15,16,TOO_HIGH
B *(R15)
…

TMLL R15,X’0003’
JNZ NOT_MULTIPLE_OF_4
CGHI R15,4
JL TOO_LOW
CGHI R15,16
JH TOO_HIGH
B *(R15)
…

With Compare & BranchWithout Compare & Branch

Here we see an example of ensuring a value in general register 15 can safely be used as an index
into a table of four branch instructions. We need to do a few checks first:

1. Make sure that the value is a multiple of four

2. Make sure that the value is equal to or greater than 4 (a value of zero would cause this code
sequence to loop forever).

3. Make sure that the value is less than or equal to 16.

The first test is performed by the TEST UNDER MASK (TMLL) instruction that examines bits 62 and
63 of general register 15. If either of these bits is one, the value cannot be a multiple of four, and the
following branch invokes an error routine.

On the left side (without the compare-and-branch) instructions, a separate comparison instruction,
followed by a branch instruction is needed to determine if the value is within the low and high bounds.

On the right side, the compare and branch instructions are combined into a single instruction, saving
code space and machine cycles.

36

36SHARE 115

General-Instructions Extension Facility:
Compare [Logical] [Immediate] and Trap

Useful when there is no need (or when you’re too lazy) to
establish a recovery environment

Same extended mnemonics as with compare-and-branch
instructions

Second OperandFirst Operand

SizeLocationSizeLocation

Op-
Code

Mne-
monic

Instruction

64

32

64

32

64

32

64

32

Register

Register

Register

Register

Register

Register

Register

Register

16

16

64

32

16

16

64

32

Immediate

Immediate

Register

Register

Immediate

Immediate

Register

RegisterB972CRTCOMPARE AND TRAP

B960CGRTCOMPARE AND TRAP

EC72CITCOMPARE IMMEDIATE AND TRAP

EC70CGITCOMPARE IMMEDIATE AND TRAP

B973CLRTCOMPARE LOGICAL AND TRAP

B961CLGRTCOMPARE LOGICAL AND TRAP

EC73CLFITCOMPARE LOGICAL IMMEDIATE AND TRAP

EC71CLGITCOMPARE LOGICAL IMMEDIATE AND TRAP

The COMPARE AND TRAP instructions combine a compare operation and, if the specified condition
is met, a program interruption, in a single instruction. When the specified condition is met, a data-
exception program interruption is generated, and a data-exception code (DXC) of FF hex is stored at
real location 147. When the specified condition is not met, execution continues with the next
sequential instruction. Many forms of the instruction are provided based on these characteristics:

• Numeric attribute: signed versus unsigned

• Operand size: 32-bit versus 64-bit

• Second-operand location: register versus immediate field

Because there is no branch location required (as in COMPARE AND BRANCH), the instruction
formats with an immediate-field comparand provide a 16-bit value.

For each of the COMPARE AND TRAP instructions, the High Level Assembler implements
extensions to the mnemonics in lieu of the M3 field, as described in the notes for COMPARE AND
BRANCH.

COMPARE AND TRAP is useful in a coding environment where a comparison is required (for
example, checking for a null pointer), but the application is not immediately concerned with the
recovery from such a comparison. Rather, if the comparison results in a true condition, the recovery
is escalated to whatever recovery routine (if any) is provided.

37

37SHARE 115

COMPARE AND TRAP (CRT)
(32-bit register signed operands)

M3 Mask Bit Values:
0 Equal
1 First operand low
2 First operand high
3 --

B972

CRT R1,R2,M3 [RRF]

R1 R2M3 ////

R1.32-63//////// //////// //////// ////////R1

R2.32-63//////// //////// //////// ////////R2

Condition Code is Unchanged

?M3
TRUE

?
Data Exception

Program Interruption
(DXC = FF hex)

COMPARE AND TRP (CRT) compares the 32-bit signed binary integer in bits 32-63 of the first-
operand register with a 32-bit signed binary integer in the corresponding bits in the second-operand
register.

If the conditions specified by the mask field (the third operand) are true, then a data exception
program-interruption condition is recognized. The data-exception code (DXC) contains FF hex.

If the conditions specified by the mask field are not true, then execution continues with the next
sequential instruction.

38

38SHARE 115

COMPARE LOGICAL IMMEDIATE AND TRAP (CLGIT)
(64-bit register, 16-bit immediate, unsigned operands)

Mask Bit Values:
0 Equal
1 First operand low
2 First operand high
3 --

EC

CLGIT R1,I2,M3 [RIE]

I2 71R1 //// M3 ////

Condition Code is Unchanged

?M3
TRUE

?

Data Exception
Program Interruption

(DXC = FF hex)

R1.0-63R1

I200000000000000000000000000000000

COMPARE LOGICAL IMMEDIATE AND TRAP (CLGIT) compares the 64-bit unsigned binary integer
in the first-operand register with a 16-bit unsigned binary integer in the I2 field of the instruction,
extended on the left with 48 binary zeros.

If the conditions specified by the mask field (the third operand) are true, then a data exception
program-interruption condition is recognized. The data-exception code (DXC) contains FF hex.

If the conditions specified by the mask field are not true, then execution continues with the next
sequential instruction.

39

39SHARE 115

General-Instructions Extension Facility:
Rotate Then xxx Selected Bits

Second OperandFirst Operand

SizeLocationSizeLocation

Op-
Code

Mne-
monic

Instruction

64

64

64

64

Register

Register

Register

Register

V

V

V

V

Register

Register

Register

RegisterEC54RNSBGROTATE THEN AND SELECTED BITS

EC57RXSBGROTATE THEN EXCLUSIVE OR SELECTED BITS

EC55RISBGROTATE THEN INSERT SELECTED BITS

EC56ROSBGROTATE THEN OR SELECTED BITS

Explanation:

V Variable number of bits processed, based on I3 and I4 operands of the instruction.

Four instructions perform a rotate-left operation on the second-operand register; bits that rotate out of
bit position zero reenter the register at bit position 63. Subsequently, depending on the instruction,
one of four operations is performed using selected bits of the rotated value and the first-operand
register.

It is the opinion of this author that these instructions, particularly the ROTATE THEN INSERT
SELECTED BITS instruction, are some of the most powerful and useful operations in the
architecture.

The following slides provide additional details.

40

40SHARE 115

General-Instructions Extension Facility:
ROTATE THEN {AND | OR | XOR} SELECTED BITS

EC R1

R?SBG R1,R2,I3,I4[,I5] [RIE]

I5 5xR2 I4I3

R2.0-63R2

Rotated Second Operand

R1 Bits I3 – I4R1

Perform Logical
Operation

on selected
Bits

Resulting Condition Code:
0 Selected bits zero
1 Selected bits not zero
2 --
3 --

Mnemonic Opcode Function
RNSBG EC-54 AND
ROSBG EC-56 OR
RXSBG EC-57 Exclusive OR

I3 I4

Three instructions, ROTATE THEN AND SELECTED BITS (RNSBG), ROTATE THEN OR
SELECTED BITS (ROSBG), and ROTATE THEN EXCLUSIVE OR SELECTED BITS (RXSBG),
rotate the value contained in the second-operand register by the number of bits specified in the I5
field. However, the contents of the second-operand register remain unchanged.

Subsequently, a logical operation (AND, OR, or XOR, depending on the instruction) is performed
using a selected range of the rotated value and the corresponding bits of the first-operand register.
The range of bits is specified by the I3 and I4 fields.

Bit 0 of the I3 field contains the test-results control (T). When the T bit is zero, the results of the
logical operation replace the selected bits of the first-operand register, and the remaining
(nonselected) bits remain unchanged. When the T bit is one, the entire first-operand register is
unchanged.

Regardless of the setting of the T bit, the condition code indicates the results of the logical operation
as performed on the selected bits only.

Note: HLASM treats the I5 field as optional. If not specified, a rotate amount of zero is used.

41

41SHARE 115

ROTATE THEN xxx SELECTED BITS (RxSBG)
(continued)

Bits 2-7 of I5 field are the rotate amount
► Bits rotate to the left; bits that rotate out of bit zero reenter at bit 63
► Negative amount effectively rotates to the right
► I5 field is optional – defaults to zero if not coded

Bits 2-7 of I3 and I4 fields are starting- and ending-bit positions of
selected bits in R1

► When I3 > I4, wrap-around occurs
► All other bits in R1 are unmodified

Bit 0 of the I3 field is the Test-Results Control (T)
► When T is one, only CC is set; no change to R1

► HLASM extended mnemonic: RxSBGT

Only the selected bits are used in determining condition code!

Bits 2-7 of the I3, I4, and I5 fields contain the starting bit position of the selected bits, then ending-bit
position of the selected bits, and the rotate amount, respectively.

When the ending-bit position is less than the starting-bit position, the selected bits wrap around. For
example, if the instruction is coded:

RNSBG R1,R2,60,3,24

then the selected bits are bits 60, 61, 62, 63, 0, 1, 2, and 3.

The test-results control (T) is contained in bit 0 of the I3 field. The following statement illustrates the
example shown above, but with the T control set:

RNSBG R1,R2,128+60,3,24

The High Level Assembler provides a mnemonic extension, “T” which causes a value of X’80’ to be
ORed into the I3 field. Thus the following statement generates code equivalent to the preceding
example:

RNSBGT R1,R2,60,3,24

The High Level Assembler also treats the fifth operand (the rotation amount) as being optional. If the
operand is not specified, no rotation is performed.

42

42SHARE 115

ROTATE THEN AND SELECTED BITS
Example: Determine if 24-, 31-, or 64-bit Address

Address is in register 15.
►Oh, by the way, preserve the contents of R15!

RNSBGT R15,R15,0,39
JZ ADDR_24
RNSBGT R15,R15,0,32
JZ ADDR_31

* Must be 64-bit address

LGR R0,R15
N R0,=X’FFFFFFFFFF000000’
JZ ADDR_24
N R0,=X’FFFFFFFF80000000’
JZ ADDR_31

* Must be 64-bit address

With RNSBGWithout RNSBG

Alters contents
of register 0.
Two literal
references!

This slide shows how to determine if an address in general register 15 can be used in various
addressing modes. If the address exceeds 16 megabytes, then it must be handled in either the 31- or
64-bit addressing modes. If the address exceeds 2 gigabytes, then it must be handled in the 64-bit
addressing mode.

In the examples on the left, a copy of the value is first ANDed with a mask representing any bits that
can must be zeros in the 24-bit addressing mode. If all of these bits are zero, then the address can
safely be treated as a 24-bit address. Next, a copy of the value is ANDed with a mask representing
bits that must be zeros in a 31-bit address. If any allo these bits are zero, then the address can be
treated as a 31-bit address. If the code falls through, we can treat the value as being a 64-bit
address.

Why a copy of the value? Because the AND instruction is destructive! The code is carefully arranged
so that we only need to make one copy of GR15, but it still makes two storage references to two
different literals.

The ROTATE THEN AND SELECTED BITS is using the test-results flag (the Z mnemonic suffix),
thus the results are not actually written to the first operand. So, there are no additional storage
references, and no need to copy the value into a separate register.

43

43SHARE 115

ROTATE THEN EXCLUSIVE OR SELECTED BITS
Example 1: Determine if Record will Fit in 4K Buffer

Address of the next-available byte in buffer in R1.

Size of record to be added in R2.

LAY R15,-1(R2,R1)

RXSBGT R15,R1,0,51

JNZ WONT_FIT

LA R15,0(R2,R1)
AGHI R15,-1
XGR R15,R1
NG R15,=X’FFFFFFFFFFFFF000’
JNZ WONT_FIT

With RXSBGWithout RXSBG

More instructions.
Literal reference.

Regardless of whether you use the code on the left or on the right, this technique is something that
every programmer should have in their tool box. It is an efficient means of determining if an address
crosses an integral (power of two) boundary. For example, when adding a record to a 4K-byte buffer,
the program needs to determine whether it will fit.

In our example, general register 1 contains the address of the next available byte in the buffer, and
general register two contains the length of the record to be added. The boundary in this example is
4K, however with slight modifications (to the mask constant on the left, or to the bit range on the
right), this example works for any power-of-two boundary.

Both code fragments begin by determining the address of the last byte that the new record would
occupy if added; this address is placed into general register 15. The code on the left does not take
advantage of the long-displacement facility, and needs two instructions to accomplish this (the LA
and AGHI), whereas the code on the right uses a long-displacement LOAD ADDRESS that allows for
negative displacement.

The magic of this determination comes from the exclusive-OR operation. By XORing the original
address with the last byte of the new address, only the bits that differ will be set to one. The code on
the left must subsequently AND off the rightmost 12 bits to isolate only the portion of the address
identifying the 4K-byte block. The code on the right can accomplish this by using ROTATE THEN
EXCLUSIVE OR SELECTED bits, but the XORing – and the setting of the condition code – is limited
to the selected bits (bits 0-51).

In either case, if any of bits 0-51 of the XORed value are one, then the addition has overflowed into
the next block, and the record won’t fit.

This technique is easily adaptable to any integral boundary that is known at compile time. The
technique can be adapted to a variable power-of-two boundary with only a few more instructions.

44

44SHARE 115

ROTATE THEN EXCLUSIVE OR SELECTED BITS
Example 2: Compare Selected Bits of Two Registers

Compare bits 0-1 and 62-63 of general registers 0
and 1 for equality, without altering their contents

RXSBGT R0,R1,62,1
JNE NO_JOY

LGR R14,R0
LGR R15,R1
NG R14,=X’C000000000000003’
NG R15,=X’C000000000000003’
CGR R14,R15
JNE NO_JOY

With RXSBGWithout RXSBG

More instructons.
Literal references.

Can’t do without modifying
registers.

This example uses the ROTATE THEN EXCLUSIVE OR instruction as a simple comparator.

Consider an example where we want to determine if bits 0-1 and 62-63 of two registers are identical
(an obtuse example, but one that has applicability when examining control register 12 – the trace
control). We’ll assume that the two registers to be compared are general registers 0 and 1, and to
make matters more complicated, we’ll assume that we want to retain the register’s contents.

In the example on the left, we must make copies of the registers, then isolate the bits to be compared
using an AND mask, and finally perform the comparison. In the example on the right, the ROTATE
THEN EXCLUSIVE OR SELECTED BITS instruction, with the test-results control set accomplished
this comparison with a single nondestructive operation.

45

45SHARE 115

ROTATE THEN INSERT SELECTED BITS (RISBG)

EC R1

RISBG R1,R2,I3,I4[,I5] [RIE]

I5 55R2 I4I3

R2.0-63R2

Rotated Second Operand

R1 Bits I3 – I4R1

Rotated Bits
are Inserted
into Selected

Bits of R1
Resulting Condition Code:
0 Result zero
1 Result less than zero
2 Result greater than zero
3 --

Remaining bits of R1 either:

• Left unchanged, or
• Set to zero

Depending on the Z control (bit 0 of
the I4 field)

I3 I4

The ROTATE THEN INSERT SELECTED BITS (RISBG) instruction rotates the value contained in
the second-operand register by the number of bits specified in the I5 field. However, the contents of
the second-operand register remain unchanged.

Subsequently, the selected range of the rotated bits are inserted into the corresponding bits of the
first-operand register. The selected range of bits is specified by the I3 and I4 fields.

Bit 0 of the I4 field contains the zero-remaining-bits control (Z). When the Z bit is zero, the remaining
(non-selected) bits of the first operand remain unchanged; when the Z bit is one, the remaining bits of
the first operand are set to zero.

The condition code is set based on the entire contents of the first-operand result register, similar to
that of LOAD AND TEST.

Note: HLASM treats the I5 field as optional. If not specified, a rotate amount of zero is used.

46

46SHARE 115

ROTATE THEN INSERT SELECTED BITS (RISBG)
(continued)

Bits 2-7 of I5 field are rotate amount
► Bits rotate to the left; bits that rotate out of bit zero reenter at bit 63
► Negative amount effectively rotates to the right
► I5 field is optional – defaults to zero if not coded

Bits 2-7 of I3 and I4 fields are starting- and ending-bit position of
selected bits in R1

► When I3 > I4, wrap-around occurs

Bit 0 of the I4 field is the Zero-Remaining-Bits Control (Z):
► When Z is zero, remaining bits of R1 left unchanged
► When Z is one, remaining bits of R1 set to zero
► HLASM extended mnemonic: RISBGZ

Condition code set à la LOAD AND TEST (based on all 64 bits)

Bits 2-7 of the I3, I4, and I5 fields contain the starting bit position of the selected bits, then ending-bit
position of the selected bits, and the rotate amount, respectively.

When the ending-bit position is less than the starting-bit position, the selected bits wrap around in a
manner similar to that of RNSBG, ROSBG, and RXSBG.

The zero-remaining-results control (Z) is contained in bit 0 of the I4 field. When the Z bit is zero, the
remaining (non-selected) bits of the first-operand register are unmodified. When the Z bit is one, the
remaining bits of the first-operand register are set to zero.

The High Level Assembler provides a mnemonic extension, “Z” which causes a value of X’80’ to be
ORed into the I4 field. Thus the following statement sets the Z bit to one, without any complicated
encoding of the fourth operand:

RISBGZ R1,R2,60,3,24

The High Level Assembler also treats the fifth operand (the rotation amount) as being optional. If the
operand is not specified, no rotation is performed.

47

47SHARE 115

ROTATE THEN INSERT SELECTED BITS
Example: Extract DAT Indices from a Virtual Address

Value in register 8 is a virtual address.
►Extract DAT indices into registers 1-6

RISBGZ 1,8,53,63,11 Reg. 1st Ix
RISBGZ 2,8,53,63,22 Reg. 2nd Ix
RISBGZ 3,8,53,63,33 Reg. 3rd Ix
RISBGZ 4,8,53,63,44 Seg. Index
RISBGZ 5,8,56,63,52 Page Index
RISBGZ 6,8,52,63,0 Byte Index

RLLG R1,R8,11 Reg. 1st Ix.
NG R1,=X’00000000000007FF’
RLLG R2,R8,22 Reg. 2nd Ix.
NG R2,=X’00000000000007FF’
RLLG R3,R8,33 Reg. 3rd Ix.
NG R3,=X’00000000000007FF’
RLLG R4,R8,44 Seg. Index
NG R4,=X’00000000000007FF’
RLLG R5,R8,52 Page Index
NG R5,=X’00000000000000FF’
LGR R6,R8 Byte Index
NG R6,=X’0000000000000FFF’

With RISBGWithout RISBG

Double the number
of instructions;
Lots of literal

references

This slide contains an example of using ROTATE THEN INSERT SELECTED BITS with the zero-
remaining-bits control set to one.

In this example, we are given a virtual address in general register 8. The code extracts the various
indices used by the dynamic-address-translation (DAT) process:

* Region first index (bits 0-10)

* Region second index (bits 11-21)

* Region third index (bits 22-32)

* Segment index (bits 33-43)

* Page index (bits 44-51), and

* Byte index (bits 52-63)

into the rightmost bits of general registers 1-6, respectively.

The example on the left accomplishes this task using ROTATE (RLLG) instructions, followed by AND
instructions to isolate the applicable bits. SHIFT RIGHT LOGICAL (SRLG) could also be used in lieu
of the ROTATE instruction.

The example on the right uses ROTATE THEN INSERT SELECTED BITS. The selected-bits
operation, combined with the zero-remaining-bits operation makes this extremely efficient.

48

48SHARE 115

Parsing-Enhancement Facility (1)

Two instructions provide enhanced translate-and-test
function

► Left-to-right (TRTE) or right-to-left (TRTRE) processing

► One-byte or two-byte argument characters
– Useful for Unicode or other DBCS support

► One-byte or two-byte function-code table

► Length specified in a register – no EXECUTE required!

► Abbreviated function-code table option for 2-byte argument
characters

– Don’t need 64K or 128K table for certain 2-byte argument-
character scanning

Ever since the IBM S/360 was introduced in 1964, TRANSLATE AND TEST (TRT) has provided a
remarkably efficient means of parsing text. The TRANSLATE AND TEST REVERSE (TRTR)
instruction, added with the extended-translation facility 3 (2004), provides a right-to-left analog to
TRT’s left-to-right processing. With well crafted function-code tables and corresponding function-
code tables, a programmer can implement a software implementation of a sophisticated parsing state
machine.

However, TRT and TRTR are limited to one-byte argument and function characters. Therefore, TRT
and TRTR are less useful in parsing modern multi-byte character representations such as
Unicode™. Furthermore, with TRT and TRTR, the length of the data being parsed is part of the
instruction’s text, thus requiring more complicated use of EXECUTE (EX) to supply a variable length.

The parsing-enhancement facility addresses these limitations by providing two extended forms of the
aforementioned instructions.

The next few slides provide an overview of the extended forms of TRT and TRTR (aptly called TRTE
and TRTRE, respectively). These slides were extracted from my SHARE 113 session 1245 which
gave a much deeper discussion of parsing using these instructions. For more detail, see that
session.

49

49SHARE 115

Parsing-Enhancement Facility (2):
TRANSLATE AND TEST EXTENDED (TRTE)

TRANSLATE AND TEST REVERSE EXTENDED (TRTRE)

B9BF

TRTE R1,R2[,M3] [RRF]

R1 R2M3 ////

Pointer to Argument-CharactersR1

Length of Argument-Characters (in bytes)R1+1

Pointer to Function-Code TableGR1

//////// //////// //////// //////// //////// ////////R2 Func Code

M3 Bit Positions:

0 – Argument-Character Control (A)
0 = one-byte argument characters
1 = two-byte argument characters

1 – Function-Code Control (F)
0 = one-byte function codes
1 = two-byte function codes

2 – Argument-Character Limit (L)
0 = unlimited argument characters
1 = argument character > 255

assumed to be zero

3 – Reserved

B9BD

TRTRE R1,R2[,M3] [RRF]

R1 R2M3 ////

Resulting Condition Code:
0 Entire 1st operand processed w/o

selecting nonzero function code
1 Nonzero function code selected
2 --
3 CPU-determined timeout

For both TRANSLATE AND TEST EXTENDED (TRTE) and TRANSLATE AND TEST REVERSE
EXTENDED (TRTRE), the first operand designates an even/odd pair of registers. The even-
numbered register contains the address of the argument characters to be scanned; the odd-
numbered register contains the true length of the first operand (in bytes). General register 1 contains
the address of the function-code table (sometimes referred to as the translate table).

The M3 field of the instruction contains three separate binary controls that affect the operation of the
instruction:

• Bit position 0 of the M3 field contains the argument-character size control (A). When A is zero,
argument characters are one byte; when A is one, argument characters are two bytes.

• Bit position 1 of the M3 field contains the function-character size control (F). When F is zero,
function characters are one byte; when F is one, function characters are two bytes.

• Bit position 3 of the M3 field contains the argument-character limit control (L). When L is zero,
argument characters are always used to index into the function table. When L is one, any argument
character greater than 255 is assumed to designate a function code of zero, without actually having
to examine the function table. More on this on the next slide.

When an argument character causes a non-zero function code to be fetched, that function code is
inserted in the rightmost bits of the second-operand register.

50

50SHARE 115

Parsing Enhancement Facility (3)

TRTE scans left to right

TRTRE scans right to left

► First-operand argument character used as index into function-code table.

► If function-code table entry is zero, continue with next argument character
(incrementing R1 and decrementing R1+1 by argument-character size)

► If function-code table entry is nonzero, insert its value in bits 56-63 or 48-63 of
R2 (depending on setting of F bit)

Argument-Character Limit (L) bit allows scanning of 2-byte argument
characters with an abbreviated (256 entry) function-code table.

► For most 2-byte character sets, the common delimiting characters (E.g.,
comma, period, parentheses, mathematical symbols, &c.) are in the first 256
positions of the function-code table

► Uninteresting characters (i.e., > 256) are assumed to have a function code of
zero, without actually accessing function-code table.

Operation of TRTE and TRTRE is similar to that of TRT and TRTR: The next argument character is
fetched from first-operand location and used as an index into the function table. The size of the
argument character is determined by the A control in the M3 field.

The function code designated by the argument character is examined. The size of the function code
is determined by the F control in the M3 field. If the function code is zero, then processing continues
with the next argument character; otherwise, execution completes. If the function code is nonzero,
then the code is inserted into general register R2, and the instruction completes with condition code
1.

If the entire first operand is processed without locating a nonzero function code, then execution
completes with condition code 0.

If a model-dependent number of characters has been processed, then execution completes with
condition code 3.

When the instruction completes, the R1+1 register has been decremented by the number of
argument bytes processed, and the R1 register is incremented by the same amount.

In many Unicode character representations, characters that are commonly used as syntactical
delimiters (such as commas, parentheses, mathematical symbols, &c.) are contained in the first 256
positions of the character set. The L bit of the M3 field allows a reduced-size function-code table to be
used, even when the arguments are two characters each.

51

51SHARE 115

Parsing-Enhancement Facility (4)
Example: State Machine Engine:

PARSER31 PARSER64
* R1 next source char.
* R2 initialized to zero.
* R4 last byte of input buffer.
* R9 function table.
* R10 state table !!

MAIN_LOOP DS 0H
LR R3,R4
SR R3,R1
JM THATS_ALL_FOLKS
CHI R3,255
JNH LENGTH_OK
LA R3,255

LENGTH_OK DS 0H
EX R3,TRT
JZ TRT_CC0
L R8,BRANCH@(R2) !!
L R9,TRT_TBL@(R2) !!
L R10,ST_TBL@(R2) !!
BR R8

TRT TRT 0(0,R1),0(R9)

* R1 function table.
* R2 initialized to zero.
* R4 next source char.
* R5 contains remaining length.
* R10 state table !!

MAIN_LOOP DS 0H
TRTE R4,R2,B’0000’
JZ THATS_ALL_FOLKS
LG R8,BRANCH@(R2) !!
LG R1,TRT_TBL@(R2) !!
LG R10,ST_TBL@(R2) !!
BR R8

All sorts of
extra instructions needed

to accommodate
variable length

This slide compares two simple parsing functions, PARSER31 and PARSER64. The former uses
instructions only available on ESA/390, whereas the latter uses z/Architecture instructions –
specifically the TRANSLATE AND TEST EXTENDED instruction introduced on the z10.

Given that the registers are pre-initialized as shown, this slide shows the core of the parser functions.
This technique puts no limits on the size of the buffer being parsed.

PARSER31’s code requires more instructions as it must use an executed TRT to account for the
variable length. Thus PARSER31 must also account for an input buffer that is larger than 256
characters; the TRT_CC0 code (not shown on this slide) allows PARSER31 to scan a buffer that is
larger than 256 characters.

Note that the register usage for PARSER64 is somewhat different. This is because it uses the
TRANSLATE AND TEST EXTENDED (TRTE) instruction.

In both cases, the functions use register 10 to point to the current state (triplet) table. Following the
executed TRT or the TRTE instruction are three LOAD instructions that load the registers
determining the next state: branch address, function-table address, and next state-table address. The
second operand for each of these loads uses register 10 as the base and register 2 as the index;
register 2 was set by the TRT or TRTE instruction, based on the nonzero function code that was
encountered.

See SHARE 113 session 1245 for more details on the operation of these two functions.

52

52SHARE 115

Parsing-Enhancement Facility (5):
Comparison of Parsing Function Performance:

00010100 40404040 40C59585 9987A840 7E404040 E6 | Energy = |

00010110 40404040 40404040 40404040 40404040 | |

00010120 to 000101FF suppressed line(s) same as above

00010200 40404094 81A2A240 405C4040 A2978585 | mass * spee|

00010210 846D9686 6D938987 88A35C5C F2404040 |d_of_light**2 |

00010220 40404040 40404040 40404040 40404040 | |

00010230 to 000102FF suppressed line(s) same as above

Scan the following 512-byte buffer and return 7 tokens

Caveats:
► Although PARSER64 uses fewer instructions, they are larger instructions,

processing larger data objects
–Possible effects on instruction and data cache

► Opportunities for additional code improvements
► Your mileage may vary

PARSER31

234 instructions executed

PARSER64

161 instructions executed

This slide shows the results of scanning the statement shown. This statement is spread over a 512-
byte buffer beginning at location 10100 hex.

The advantages of PARSER64’s use of TRANSLATE AND TEST EXTENDED can be seen in that it
uses substantially fewer instructions.

In fairness, we must disclose that there is a slight penalty for using 64-bit mode instructions.
Obviously, the 64-bit addresses used by PARSER64 consume more space in the data cache than
the 31-bit addresses used by PARSER31. Some 64-bit z/Architecture instructions – particularly those
that access storage – may be larger than their 31-bit ESA/390 analogues (6 bytes versus 4). Thus
the 64-bit model may also take slightly more instruction cache. However, the software
implementation of the finite-state machine implemented in both functions is extremely tight code, thus
a minimum of cache lines are used in either case.

The performance improvement from using the newer instructions – particularly TRANSLATE AND
TEST EXTENDED – is far more significant than any minor cache-hit penalty from using 64-bit
addressing.

53

53SHARE 115

Summary

We have examined a small portion of the new architectural facilities added
to System Z

► Store-facility-list-extended
► Long-displacement
► Extended-immediate
► Move-with-optional-specifications
► General-instruction-extensions
► Parsing-enhancement

Use of these instructions can prove beneficial for several reasons
► Reduced number of instructions required
► Reduced number of cycles consumed
► Reduced code image
► Reduced complexity

Potential for significant performance improvement

From the introduction of z/Architecture in 2000 to the System z10 in 2008, there have been
approximately 283 new instructions added. (I say approximately, as I did a rough count when making
up this slide, but it’s pretty close … suffice it to say that this is not a RISC architecture.) Thus, in a
one hour session, I’ve barely had the opportunity to scratch the surface.

We’ve examined some of the major facilities that have been introduced, and shown concrete
examples of how these instructions can improve the performance of your applications. (Store-facility-
list-extended really doesn’t get you any improved performance, but it gives the application program
an accurate indication of what other facilities are present.) By using these facilities, you can:

1. Reduce the number of instructions required to perform a complex operation. In the FLOGR
example, when searching through all 64 bits of a register, the single instruction is 80x to 100x faster
than the coding example on the left (and I squeezed every cycle out of that example that I could).

2. By reducing the number of storage references, the newer code can significantly reduce the
number of cycles that a program spends accessing memory – particularly when an operand is not in
the cache.

3. By reducing the constants and literals in storage, the program’s size is reduced, requiring fewer
cache lines.

4. In some cases, a single instruction can replace numerous other, more complicated code
sequences.

Judicious use of the newer z/Architecture instructions has the potential of significantly improving the
performance of applications.

54

54SHARE 115

Questions?

For those in the live audience, I will gladly entertain questions here.

For those who view this on the SHARE web site, your questions are also welcome. My email address
is listed on the first slide.

