
WebSphere MQ Clustering

Morag Hughson

hughson@uk.ibm.com

Agenda

• The purpose of clustering

• Defining a cluster
– Clustering concepts

– Defining and checking cluster queue managers

• Lifting the Lid on Clustering
– Initial Definitions

– First MQOPEN

• Workload Balancing
– The WLM algorithm in depth

• Pub/Sub Clusters

• Further Considerations
– RESET, REFRESH

• Recommendations

N

O

T

E

S

What are clusters?
• The term clusters means has different meaning for different people as there are a large number of

technologies that use the term and a large number of products that offer “clustering”.
• Clustering is usually associated with parallel processing or high availability technologies.
• There exist many different types of parallel processing architectures. The amount of symmetry between

the processing nodes varies between architectures.
• Although WMQ clustering does provide a level of high availability, its raison d’etre is as a WMQ parallel

processing feature.
• The most symmetric systems are similar to SP2. These are essentially a set of identical processors

(RS/6000) connected together using a high speed switch which allows fast communication between the
individual nodes.

• Systems like z/OS Parallel Sysplex consist of complexes of processors, each complex comprising
numerous, but same type processors. The complex is connected together using a coupling facility,
which, as well as allowing high speed communication, also allows efficient data sharing. Most parallel
architectures do not have this type of data sharing capability.

• The most generalized parallel architectures involve processors of different types, running different
operating systems connected together using different network protocols. This necessarily includes
symmetric systems like SP2 and Parallel Sysplex.

• A WebSphere MQ cluster is most similar to the most generalized parallel architecture. This is because
WebSphere MQ exploits a wide variety of platforms and network protocols. This allows WebSphere MQ
applications to naturally benefit from clustering.

• WebSphere MQ clusters are solve a requirement to group queue managers together (i.e. to increase
processing power of the WMQ network) whilst minimising the administration costs associated with
WMQ queue manager intercommunication.

The purpose of clustering

• Simplified administration
– Large WMQ networks require many object definitions

• Channels

• Transmit queues

• Remote queues

• Workload balancing
– Spread the load

– Route around failures

• Flexible connectivity
– Overlapping clusters

– Gateway Queue managers

• Pub/sub Clusters

N

O

T

E

S

How can we process more messages?
• It would be nice if we could place all the queues in one place. We could then add processing capacity

around this single Queue manager as required and start multiple servers on each of the processors.
We would incrementally add processing capacity to satisfy increased demand. We could manage the
system as a single entity. A client application would consider itself to be talking to a single Queue
manager entity.

• Even though this is highly desirable, in practice it is almost impossible to achieve. Single machines
cannot just have extra processors added indefinitely. Invalidation of processor caches becomes a
limiting factor. Most systems do not have an architecture that allows data to be efficiently shared
between an arbitrary number of processors. Very soon, locking becomes an issue that inhibits
scalability of the number of processors on a single machine. These systems are known as "tightly
coupled" because operations on one processor may have a large effect on other processors in the
machine cluster.

• By contrast, "loosely coupled" clusters (e.g. the Internet) have processors that are more or less
independent of each other. Data transferred to one processor is owned by it and is not affected by other
processors. Such systems do not suffer from processor locking issues. In a cluster solution, there are
multiple consumers of queues (client queue managers) and multiple providers of queues (server queue
managers). In this model, for example, the black queue is available on multiple servers. Some clients
use the black queue on both servers, other clients use the black queue on just one server.

• A cluster is a loosely coupled system. Messages flow from clients to servers and are processed and
responses messages sent back to the client. Servers are selected by the client and are independent of
each other. It is a good representation of how, in an organization, some servers provide many services,
and how clients use services provided by multiple servers.

• The objective of WebSphere MQ clustering is to make this system as easy to administer and scale as
the Single Queue Manager solution.

Goals of Clustering

• Multiple Queues with single image

• Failure isolation

• Scalable throughput

• MQI applications to exploit clusters transparently

• Definition through usage (MQOPEN)

• MQGET always local

N

O

T

E

S

Goals of Clustering

• Consider a client using the black queue that is available in the cluster on three
server queue managers. A message is MQPUT by the client and is delivered to
one of the servers. It is processed there and a response message sent to a
ReplyToQueue on the client queue manager.

• In this system, if a server becomes unavailable, then it is not sent any further
messages. If messages are not being processed quickly enough, then another
server can be added to improve the processing rate.

• It is important that both these behaviors are achieved by existing MQI
applications, i.e. without change. It is also important that the administration of
clients and servers is easy. It must be straight forward to add new servers and
new clients to the server.

• We see how a cluster can provide a highly available and scalable message
processing system. The administration point in processing is MQOPEN as this
is when a queue or queue manager is identified as being required by an
application.

• Note that only one message is sent to a server; it is not replicated three times,
rather a specific server is chosen and the message sent there. Also note that
MQGET processing is still local, we are not extending MQGET into the network.

WMQ Cluster Architecture

Full Repository QMs

1

5
4

36

8

9

10
11

7

2

Partial Repository QMs
+ Reply applications

Partial Repository QMs
+ Request applications

N

O

T

E

S

WMQ Cluster Architecture

• Reply queue manager hosts applications that send request and receive reply.

• Request queue manager hosts applications that receive request and send reply.

• Let us walk through the flow of a message from a request queue manager to a
reply queue manager and the response message that is returned. We assume
that the request app has never used the queue providing the service previously,
and that the request app has not communicated with the request app previously.

• Clustering introduces a new architectural layer, the Full Repository and Partial
Repository queue managers, purely for the sake of explanation. Full Repository
queue managers are not separate queue managers (contrast to DNS servers),
and their role is to serve as a global directory of queues and queue managers in
the cluster. There are a small number of these Full Repositories. Each request
and reply queue manager have a Partial Repository. In practice, Full Repository
queue managers often host applications too.

N

O

T

E

S

WMQ Cluster Architecture

• At MQOPEN, the queue manager to which the application is connected detects
that this queue has not been used by this queue manager previously. The queue
manager sends an internal message (1) requesting the location of the servers for
the green queue and channel definitions to get to these servers. The returned
definitions (2) are installed on the request queue manager, a channel is
automatically defined to the reply queue manager (3).

• Similar processing occurs at the request side, to locate the requestor’s
ReplyToQueue manager.

• The most frequent method used by a reply app to send a response message to a
requestor is to use the routing information in the message descriptor, namely the
ReplyToQ and ReplyToQMgr. The reply app's requirement is slightly different to
the original request, since the originating application's ReplyToQ is normally
private to its Queue manager, i.e. it is not visible to the whole cluster. In this case
the server needs to be able to locate the ReplyToQMgr rather than the ReplyToQ.

N

O

T

E

S

WMQ Cluster Architecture

• This happens as follows. When an MQPUT1 or MQOPEN request is made to
send a message to a ReplyToQMgr for the first time, the queue manager sends
an internal message (4) to the repository requesting the channel definition
required to reach the client. The returned definition (5) is used to automatically
define a channel to the request queue manager (6) to get the message back to
the request queue manager where local queue resolution puts the message on
the ReplyToQ.

• Finally, we see what happens when some attributes of a cluster queue or cluster
Queue manager change. One interesting case is the creation of a new instance
of a cluster queue manager holding a cluster queue being used by a request (7).
This information is propagated from the reply queue manager (8). The Full
Repository propagates the definition to the other Full Repository (9) and the Full
Repository propagates it to any interested request QMs through the repository
network (10), allowing this new instance to be used during an MQOPEN,
MQPUT or MQPUT1 call (11).

• Note that channels are only automatically defined once on the first MQOPEN
that resolves to a queue on the remote queue manager, not for every MQOPEN
or MQPUT.

New in V7 - Pub/sub Clusters

• For distributed pub/sub

• Based on clustered topic
objects

– Hosted on one or more queue
managers in the cluster

• Based on clustering for object
auto-definition

– All to all queue manager
connectivity

– Channel auto-definition on first
cluster topic definition

• How large?
– 100 queue managers

TOPIC

SUBPUB

SUB

SUB

PUB

N

O

T

E

S

New in V7 - Pub/sub Clusters

• WebSphere MQ V7 introduces Pub/sub Clusters which are used for distributed
pub/sub, allowing publishers to send publications to remote subscribers.

• Pub/Sub clusters use the underlying clustering features to provide automatic
connectivity between queue managers.

• The point of control for Pub/sub clusters is the topic object which can be
administratively shared in the cluster, just as queues can be shared in a cluster.

• We will look at this in more detail a little later.

Resource definition for a Partial Repository

• CLUSRCVR definition provides the information to the cluster that allows other queue managers
to automatically define sender channels

DEFINE CHANNEL(TO.QM1) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(MACHINE1.IBM.COM) CLUSTER(DEMO)

DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(MACHINE2.IBM.COM) CLUSTER(DEMO)

• CLUSSDR definition must direct the queue manager to a Full Repository where it can find
out information about the cluster

DEFINE QLOCAL(PAYROLLQ) CLUSTER(DEMO)

• Queues can be advertised to the cluster using the CLUSTER() keyword

DEFINE TOPIC(SPORTS) TOPICSTR(/global/sports) CLUSTER(DEMO)

• …and so can Topics

N

O

T

E

S

Resource definition for Partial Repository
QM1

• The cluster channels are the backbone of the cluster, and it is worth taking a little time to
understand what they are used for. The use varies slightly depending on whether the
queue manager is going to be used as a Full Repository or a Partial Repository.

Partial Repository
• To get a Partial Repository queue manager running in the cluster, you will need to define a

cluster sender channel and a cluster receiver channel.
• The cluster receiver channel is the most important of the two as it has 2 roles. (1) It is

used as a standard receiver channel on the queue manager on which it is defined. (2)
The information it contains is used by other queue managers within the cluster to generate
automatically defined cluster sender channels to talk to the queue manager on which the
cluster receiver is defined. It is for this reason that the cluster receiver channel definition
contains a number of attributes usually associated with sender channels such as the
conname.

• The cluster sender channel is used to point the Partial Repository at a Full Repository
queue manager from which it can then find out about other Full Repository queue
managers and resources in the cluster. The cluster sender channel on a Partial
Repository queue manager could be considered to be a boot-strap. Once the Partial
Repository has exchanged some initial information with the Full Repository, the manually
defined cluster sender channel is no longer required, but can be used to preferentially
choose a Full Repository to publish and subscribe for cluster resources as mentioned
previously.

N

O

T

E

S

Resource definition for Full Repositories
Full Repository
• A full repository is created by issuing alter qmgr(CLUSNAME)
• On a Full Repository, the role of the cluster receiver channel is the same :- it provides the

information required by other queue managers in the cluster to talk to the Full Repository.
The difference is in the use of the cluster sender channels. Manually defined cluster
sender channels must be used to link all of the Full Repositories within the cluster. For
the Full Repositories to communicate correctly, these channels need to connect the Full
Repositories into a fully connected set. In a typical scenario with 2 Full Repositories, this
means each Full Repository must have a cluster sender channel to the other Full
Repository. These manual definitions mean that the flow of information between the Full
Repositories can be controlled, rather than each one always sending information to every
other Full Repository.

• The 2 key points to remember are:
• The Full Repositories must form a fully connected set using manually defined cluster

sender channels.
• The information in the cluster receiver will be propagated around the cluster and used by

other queue managers to create auto defined cluster sender channels. Therefore it is
worth double checking that the information is correct.

• Note: If you alter a cluster receiver channel, the changes are not immediately reflected in
the corresponding automatically defined cluster sender channels. If the sender channels
are running, they will not pick up the changes until the next time they restart. If the sender
channels are in retry, the next time they hit a retry interval, they will pick up the changes.

Considerations for Full Repositories (FRs)

• FRs should be highly available
– Avoid single point of failure - have at least 2

– Recommended to have exactly 2 unless you find
a very good reason to have more

– Put them on highly available machines

• FRs must be fully inter-connected
– Using manually defined cluster sender channels

• If at least one FR is not available or
they are not fully connected
– Cluster definition changes via FRs will not flow

– User messages between Partial Repositories
over existing channels will flow

N

O

T

E

S

Considerations for Full Repositories (FRs)

• Full Repositories must be fully connected with each other using manually defined cluster
sender channels.

• You should always have at least 2 Full Repositories in the cluster so that in the event of a
failure of a Full Repository, the cluster can still operate. If you only have one Full
Repository and it loses its information about the cluster, then manual intervention on all
queue managers within the cluster will be required in order to get the cluster working
again. If there are two or more Full Repositories, then because information is always
published to and subscribed for from 2 Full Repositories, the failed Full Repository can be
recovered with the minimum of effort.

• Full Repositories should be held on machines that are reliable and highly available. This
said, if no Full Repositories are available in the cluster for a short period of time, this does
not effect application messages which are being sent using the clustered queues and
channels, however it does mean that the clustered queue managers will not find out about
administrative changes in the cluster until the Full Repositories are active again.

• For most clusters, 2 Full Repositories is the best number to have. If this is the case, we
know that each Partial Repository manager in the cluster will make its publications and
subscriptions to both the Full Repositories.

• It is possible to have more than 2 Full Repositories.

N

O

T

E

S

Considerations for Full Repositories (FRs)
• The thing to bear in mind when using more than 2 Full Repositories is that queue

managers within the cluster still only publish and subscribe to 2. This means that if the 2
Full Repositories to which a queue manager subscribed for a queue are both off-line, then
that queue manager will not find out about administrative changes to the queue, even if
there are other Full Repositories available. If the Full Repositories are taken off-line as
part of scheduled maintenance, then this can be overcome by altering the Full
Repositories to be Partial Repositories before taking them off-line, which will cause the
queue managers within the cluster to remake their subscriptions elsewhere.

• If you want a Partial Repository to subscribe to a particular Full Repository queue
manager, then manually defining a cluster sender channel to that queue manager will
make the Partial Repository attempt to use it first, but if that Full Repository is unavailable,
it will then use any other Full Repositories that it knows about.

• Once a cluster has been setup, the amount of messages that are sent to the Full
Repositories from the Partial Repositories in the cluster is very small. Partial Repositories
will re-subscribe for cluster queue and cluster queue manager information every 30 days
at which point messages are sent. Other than this, messages are not sent between the
Full and Partial Repositories unless a change occurs to a resource within the cluster, in
which case the Full Repositories will notify the Partial Repositories that have subscribed
for the information on the resource that is changing.

• As this workload is very low, there is usually no problem with hosting the Full Repositories
on the server queue managers. This of course is based on the assumption that the server
queue managers will be highly available within the cluster.

• This said, it may be that you prefer to keep the application workload separate from the
administrative side of the cluster. This is a business decision.

How big can a cluster be?

No fixed limits

What is the maximum number of
channels your servers can

support?

3000 queue manager clusters in
production

Pub/sub Cluster to around 100

N

O

T

E

S

How big can a cluster be?
• There are no predefined limits to the size of a cluster. The main thing to consider is the

maximum number of channels that will need to connect to your server queue managers
(and also to the Full Repositories). If for instance, you are hosting cluster queues on a
WMQ z/OS queue manager, then the maximum number of channels is about 9000. This
would give a maximum theoretical cluster size of 4500 queue managers, if each queue
manager in the cluster had one channel going to the server queue manager and one
channel back from the server queue manager.

• If you require more queue managers than this, there are ways that this can be achieved.
For example you could have more than one backend server and a customized workload
balancing exit could be written to partition the work across the different servers. The
internal workload algorithm will always round robin across all the servers so they would
each need to cope with channels from all the clients. We will look closer at workload
balancing later in the presentation.

• One question we are regularly asked is whether it is better to have one large cluster or
multiple smaller clusters. This should usually be a business decision only. It may be for
example that you wish to separate secure requests coming from branches of the business
over channels using SSL from un-secure requests coming from the internet. Multiple
clusters would allow you to achieve this whilst still using the same backend servers to
handle both request types.

• Pub/subs clusters scale into the 100s of queue managers, not the 1000s due to the all to
all connectivity and overhead of proxy-subscriptions.

Initial definitions

Repository Task

CLUSRCVR
Qmgr P1

TO.P1 2.

Channel
Code

Repository Cache

Repository Task

Repository Cache

Channel
Code

CLUSSDRA
Qmgr P1

TO.P1 4.

TO.F13.

TO.P15.

CLUSRCVR
Qmgr F1

TO.F1

P1 F1

N

O

T

E

S

Initial definitions

• The previous diagram shows the communications that occur between a Partial Repository
and a Full Repository queue manager when the Partial Repository is added to the cluster.

• A cluster sender channel is defined on the Partial Repository. The queue manager name
seen on a DISPLAY CLUSQMGR command, shows a name that starts
SYSTEM.TEMPQMGR. This name will be changed when the Partial Repository has
communicated with the Full Repository and found out the real name of the Full Repository.

• A cluster receiver channel is defined on the Partial Repository.

• Once both a cluster sender channel and a cluster receiver channel for the same cluster are
defined, the repository task starts the cluster sender channel to the Full Repository.

• The information from the cluster receiver channel on the Partial Repository is sent to the
Full Repository which uses it to construct an auto defined cluster sender channel back to
the Partial Repository.

• The repository task on the Full Repository starts the channel back to the Partial Repository
and sends back the information from its cluster receiver channel.

• The Partial Repository merges the information from the Full Repositories cluster receiver
channel with that from its manually defined cluster sender channel. The information from
the Full Repositories cluster receiver channel takes precedence.

Checking initial definitions

• On the Full Repository display the new Partial Repository queue
manager

• If the Partial Repository queue manager is not shown, the Full
Repository has not heard from the Partial Repository

– Check channel status from the Partial to the Full
– Check CLUSRCVR and CLUSSDR channels CLUSTER name
– Check for error messages

• On the Partial Repository display all cluster queue managers

• If the channel to the Full Repository has a queue manager name
starting SYSTEM.TEMPQMGR, the Partial Repository has not heard
back from the Full Repository

– Check channel status from the Full to the Partial
– Check for error messages

DISPLAY CLUSQMGR(*)

DISPLAY CLUSQMGR(<partial repos qmgr name>)

N

O

T

E

S

Checking initial definitions
• On the Partial Repository, issue DISPLAY CLUSQMGR(*) to display all the cluster queue

managers that the Partial Repository is aware of. What we want to check is that the
manually defined cluster-sender channel to the Full Repository no longer has a
CLUSQMGR name starting SYSTEM.TEMPQMGR. If it does, then we know that the initial
communications between the Partial Repository and the Full Repository have not
completed. The checklist below should help to track down the problem:

• Check the CLUSTER name defined on the CLUSRCVR and CLUSSDR channels
– The Partial Repository will not attempt to talk to the Full Repository unless both the CLUSRCVR and the CLUSSDR

channels are defined with the same cluster name in the CLUSTER keyword.

• Check the status of the channel to the Full Repository.
– The CLUSSDR channel to the Full Repository should be RUNNING. If it is in status RETRYING, check the

CONNAME is correct, the network is ok and that the listener on the Full Repository is running.

• On Full Repository, issue DISPLAY CLUSQMGR(<partial repos name>)
– If the Partial Repository has established a connection with the Full Repository, it will have sent the information from its

CLUSRCVR channel to the Full Repository which will have used it to create an auto-defined CLUSSDR channel back
to the Partial Repository. We can check if this has occurred by issuing the DISPLAY CLUSQMGR command on the
Full Repository. Check channel status of the channel back from Full Repository.

– The Full Repository should send the information from its CLUSRCVR channel back to the Partial Repository, thus the
channel back to the Partial Repository should be RUNNING. If the channel is RETRYING, check the CONNAME on
the Partial Repository’s CLUSRCVR is correct (remember this is where the Full Repository got the CONNAME from)
and check that the listener on the Partial Repository is running.

• Check for error messages
– If an error occurs in the repository task on either the Partial Repository queue manager or the Full Repository queue

manager, error messages are produced. If the checklist above does not provide the answer to the problem, it is worth
examining the error logs from the queue managers as this may aid the problem diagnosis.

First MQOPEN of a Queue

Repository

Task

Repository Cache

MQOPEN MY.Q

Channel
code

SYSTEM.CLUSTER.
REPOSITORY.QUEUE

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

SYSTEM.CLUSTER.
COMMAND.QUEUE

Q=MY.Q

Qmgr S1

Qmgr F1

TO.F1

Sub

Q=MY.Q

Qmgr P1

TO.P1

QMGR P1

QMGR F1

QMGR S1

MY.Q
1 2

3

5

4a

6 7

8a

8b
4c 4b

6

N

O

T

E

S

First MQOPEN of a Queue
• The previous diagram shows what happens when a cluster queue is opened for the first time on a queue

manager.
• The MQOPEN request is issued and as part of the MQOPEN, the repository cache is examined to see if

the queue is known about. No information is available in the cache as this is the first MQOPEN of the
queue on this qmgr.

• A message is put to the SYSTEM.CLUSTER.COMMAND.QUEUE requesting the repository task to
subscribe for the queue.

• When the repository task is running, it has the SYSTEM.CLUSTER.COMMAND.QUEUE open for input
and is waiting for messages to arrive. It reads the request from the queue.

• The repository task creates a subscription request. It places a record in the repository cache indicating
that a subscription has been made and this record is also hardened to the
SYSTEM.CLUSTER.REPOSITORY.QUEUE. This queue is where the hardened version of the cache is
kept and is used when the repository task starts, to repopulate the cache. The subscription request is
sent to 2 Full Repositories. It is put to the SYSTEM.CLUSTER.TRANSMIT.QUEUE awaiting delivery to
the SYSTEM.CLUSTER.COMMAND.QUEUE on the Full Repository queue managers.

• The channel to the Full Repository queue manager is started automatically and the message is delivered
to the Full Repository. The Full Repository processes the message and stores the subscription request.

• The Full Repository queue manager sends back the information about the queue being opened to the
SYSTEM.CLUSTER.COMMAND.QUEUE on the Partial Repository queue manager.

• The message is read from the SYSTEM.CLUSTER.COMMAND.QUEUE by the repository task.
• The information about the queue is stored in the repository cache and hardened to the

SYSTEM.CLUSTER.REPOSITORY.QUEUE
• At this point the Partial Repository knows which queue managers host the queue. What it would then

need to find out is information on the channels that the hosts of the queue have advertised to the cluster,
so that it can create auto-defined cluster sender channels too them. To do this, more subscriptions would
be made (if necessary) to the Full Repositories.

The SYSTEM.CLUSTER queues

• SYSTEM.CLUSTER.COMMAND.QUEUE
– Holds inbound administrative messages
– IPPROCS should always be 1
– CURDEPTH should be zero or decrementing
– If not, check repository task and error messages

• SYSTEM.CLUSTER.REPOSITORY.QUEUE
– Holds hardened view of repository cache
– CURDEPTH should be greater than zero
– CURDEPTH varies depending on checkpoints. This is not a

problem.

• SYSTEM.CLUSTER.TRANSMIT.QUEUE
– Holds outbound administrative messages
– Holds outbound user messages
– CorrelId in MQMD added on transmission queue will contain the

name of the channel that the message should be sent down

N

O

T

E

S

The SYSTEM.CLUSTER queues

• These queues are for internal use only. It is important that applications do not
put or get messages from the SYSTEM.CLUSTER queues.

Routing messages in and out of clusters

• A very flexible set of options
– Clients

– Queue Managers

– Overlapping clusters

C

Overlapping clusters

• Why use them?
– Geographic/network separation

– To allow different organizations to administer their own

– To allow independent applications to be administered separately

– To create classes of service

– To create test and QA environments (production usually kept separate)

Overlapping cluster channel and queues

• Channel configurations
– Separate channels per cluster

• DEF CHL(TO.QM1.BLUE) CHLTYPE(CLUSRCVR) CLUSTER(BLUE)
• DEF CHL(TO.QM1.RED) CHLTYPE(CLUSRCVR) CLUSTER(RED)
• Finer admin control (e.g. Can stop channels for specific cluster, Security)

– Combined channels for multiple clusters
• DEF NAMELIST(CLNL) NAMES(BLUE,RED)
• DEF CHL(TO.QM1) CHLTYPE(CLUSRCVR) CLUSNL(CLNL)
• Less channel definitions

• Queues configurations
– Separate queues per cluster – more common

• DEF QL(Q1.BLUE) CLUSTER(BLUE)
• DEF QL(Q1.RED) CLUSTER(RED)

– Queues in multiple clusters
• DEF NAMELIST(CLNL) NAMES(BLUE,RED)
• DEF CHL(Q1) CLUSNL(CLNL)

QM1

QM2 QM3

QM4 QM5

Routing into and out of clusters

• See the infocenter for theory and examples. See the next few charts for
some examples

• Three key objects available…

• Remote queue (QREMOTE)
– Used to map remote queue names
– E.g. DEFINE QREMOTE(LOCALQ) RNAME(REMQ) RQMNAME(QMB)

• Queue manager alias (QREMOTE)
– Used to map queue manager names
– E.g. DEFINE QREMOTE(LOCALQMGR) RNAME(‘ ‘) RQMNAME(QMB)

• Queue alias (QALIAS)
– Used to map queue names
– E.g. DEFINE QALIAS(Q1) TARGQ(Q2)

– Terminology hell surrounding QREMOTE for queue manager alias

N

O

T

E

S

Routing Into and Out of clusters

Questions to Consider:

• Do you want the message workload balanced or routed to a specific target?

• Do you want a fixed or flexible architecture.

• Flexible architectures -> Respond better to change

• Fixed architectures -> Give greater control

• “If I add another backend queue manager, what other queue managers need object
changes?”

• Security requirements?

• Aliasing for security

• Different objects require different object authorities

• Different approaches require differing numbers of objects

• How much object architectural “awareness” is required in applications

• Do you want apps to specify a Queue Manager?

• Do you want apps to use local or remote queue objects?

• Do we want to change the code or application parameters?

• Can we change them?

• Can we remap with aliasing?

Scenario 1

• QMX
– DEFINE CHL(QMX.TO.QMA) CHLTYPE(SDR) XMITQ(QMA)
– DEFINE CHL(QMA.TO.QMX) CHLTYPE(RCVR)
– DEFINE QL(QMA) USAGE(XMITQ)
– DEFINE QREMOTE(QMB) RNAME(‘ ‘) RQMNAME(QMB) XMITQ(QMA)

• QMA
– DEFINE CHL(QMA.TO.QMX) CHLTYPE(SDR) XMITQ(QMX)
– DEFINE CHL(QMX.TO.QMA) CHLTYPE(RCVR)
– DEFINE QL(QMX) USAGE(XMITQ)

• Now our app can put to CQ1 on QMB.
• Without admin changes our app could put to any queue (clustered or not) on QMB.
• But… can’t put to queues on QMC or QMD

QMAQMX QMC

QMD

QMB

MQCONNX(QMX)
MQOPEN(CQ1, QMB)
MQPUT
…

Application 1
CQ1

CQ1

CQ1

QMB

Scenario 2

• QMX
– DEFINE CHL(QMX.TO.QMA) CHLTYPE(SDR) XMITQ(QMA)
– DEFINE CHL(QMA.TO.QMX) CHLTYPE(RCVR)
– DEFINE QL(QMA) USAGE(XMITQ)
– DEFINE QREMOTE(CQM) RNAME(‘ ‘) RQMNAME(CQM) XMITQ(QMA)

• QMA
– DEFINE CHL(QMA.TO.QMX) CHLTYPE(SDR) XMITQ(QMX)
– DEFINE CHL(QMX.TO.QMA) CHLTYPE(RCVR)
– DEFINE QL(QMX) USAGE(XMITQ)

• QMB
– DEFINE QREMOTE(CQM) RNAME(‘ ‘) RQMNAME(QMB) CLUSTER(BLUE)

• Now our app can put to CQ1 on QMB, QMC, and QMD.
• Without admin changes our app could put to any queue (clustered or not) on QMB, QMC, and QMD
• But… If we want to workload balance to all queue managers in the cluster, it seems like a lot of effort to define so

many queue manager aliases

QMAQMX QMC

QMD

QMB

MQCONNX(QMX)
MQOPEN(CQ1, CQM)
MQPUT
…

Application 1
CQ1

CQ1

CQ1

CQM

CQM

CQM
CQM

Scenario 3

• QMX
– DEFINE CHL(QMX.TO.QMA) CHLTYPE(SDR) XMITQ(QMA)
– DEFINE CHL(QMA.TO.QMX) CHLTYPE(RCVR)
– DEFINE QL(QMA) USAGE(XMITQ)
– DEFINE QREMOTE(CQM) RNAME(‘ ‘) RQMNAME(CQM) XMITQ(QMA)

• QMA
– DEFINE CHL(QMA.TO.QMX) CHLTYPE(SDR) XMITQ(QMX)
– DEFINE CHL(QMX.TO.QMA) CHLTYPE(RCVR)
– DEFINE QL(QMX) USAGE(XMITQ)
– DEFINE QREMOTE(CQM) RNAME(‘ ‘) RQMNAME(‘ ‘)

• Now our app can put to CQ1 on QMB, QMC, and QMD.
• Without admin changes our app could put to any queue (clustered or not) on QMA, QMB, QMC, and

QMD
• We can add queue managers and queues to the cluster without needing to add more queue manager

aliases

QMAQMX QMC

QMD

QMB

MQCONNX(QMX)
MQOPEN(CQ1, CQM)
MQPUT
…

Application 1
CQ1

CQ1

CQ1

CQMCQM

Scenario 4

• QMC
– DEFINE QALIAS(ACQ1) TARGQ(CQ1) CLUSTER(BLUE)

• Now our app can put to any CQ1 in cluster RED

• But… need an alias for each queue

MQCONNX(QMA)
MQOPEN(ACQ1, ‘ ‘)
MQPUT
…

Application 1

QMA QMC

QMD

QMB QME
CQ1

QMG

CQ1

QMF
CQ1ACQ1

Scenario 5

• QMC
– DEFINE QREMOTE(CQM) RNAME(‘ ‘) RQMNAME(‘ ‘) CLUSTER(BLUE)

• Now our app can put to any cluster queue in cluster RED

MQCONNX(QMA)
MQOPEN(CQ1, CQM)
MQPUT
…

Application 1

QMA QMC

QMD

QMB QME
CQ1

QMG

CQ1

QMF
CQ1

CQM

Lots possible

Remote Qs, QM aliases, Q aliases…
- Which should I use????

• Here are some considerations
– Security

– How flexible is the architecture
• More queue managers? More queues?

– Keep checking…. Is this as simple as it could be?

– What knowledge of the system does the app require?
• Queue manager name? Target queue name or some intermediate alias?

– Should messages be workload balanced?
• Or just using clustering for connectivity

N

O

T

E

S

Remote Qs, QM aliases, Q aliases…
- Which should I use????

• With all these different options available, which should I use? Well the answer does depend.
The considerations for your set-up will help make your choice. Here are some things to
consider when making the choice.

• When thinking about security, be aware that queue manager aliases cannot be secured by
named object (instead you use the SYSTEM.CLUSTER.TRANSMIT.QUEUE name).
Queues, remote queues, and queue aliases can be secured by named object. This provides
a more granular security model which is useful when a single queue manager is used by
multiple users/applications/workloads.

• Take into account how much change is likely in the future in your architecture. For example,
do you need to add more queue manager aliases if you add another cluster queue
manager? Do you need to add more queue aliases if you add another cluster queue?

• What knowledge of the system does the application require. For example, does it need to
specify a queue manager name? Does it need to specify the target queue name or some
intermediate alias? MQ is very forgiving here, with a strong set of aliasing available.

• Are you simply trying to get a message from outside the cluster to one particular queue
manager OR do you want to use the workload balancing function of clustering?

• Some useful manual references
– ‘Using aliases and remote-queue definitions with clusters’ section of the WebSphere MQ Queue Manager Clusters

manual
– ‘Name resolution’ section of the WebSphere MQ Application Programming Guide

Workload balancing - Bind Options

• Bind on open
– Messages are bound to a destination chosen at MQOPEN
– All messages put using open handle are bound to same destination

• Bind not fixed
– Each message is bound to a destination at MQPUT
– Workload balancing done on every message
– Recommended - No affinities are created (SCTQ build up)

• Application options
– MQOO_BIND_ON_OPEN
– MQOO_BIND_NOT_FIXED
– MQOO_BIND_AS_Q_DEF (Default)

• DEFBIND Queue attribute
– OPEN (Default)
– NOTFIXED

O
P

E
N

N
O

T
 F

IX
E

D

N

O

T

E

S

Workload balancing - Bind Options - Notes

• Affinity is the need to continue using the same instance of a service, with multiple
messages being sent to the same application process. This is often also known as
conversational style applications. Affinity is bad news for parallel applications since it
means there is a single point of failure. It can also inhibit scalability (no longer shared
nothing, long locks needed). Historically, affinities have caused many problems.

• When writing new applications, one of your design goals should be for no affinities.
• If you cannot get around the need for an affinity in your application, however, MQ will help

you.
• If you require all the messages in a conversation to be targeted to the same queue

manager, you can request that using the bind options, specifically the “Bind on open”
option. Using this option, a destination is chosen at MQOPEN time and all messages put
using that open handle are bound to same destination. To choose a new destination,
perhaps for the next set of messages, close and reopen the destination in order to re-drive
the workload balancing algorithm to choose a new queue manager.

• If you do not have any affinities in your applications, you can use the opposite option, the
“Bind not fixed” option.

• This behaviour can either be coded explicitly in your application using the MQOO_BIND_*
options or through the default attribute DEFBIND on a queue definition. This attribute
defaults to “Bind on open” to ensure applications not written with parallelism in mind still
work correctly in a cluster.

When does workload balancing occur?

MQOPEN
CQ1

MQPUT
CQ1

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

QM1

QM3

QM2

RETRY

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

CQ1

CQ1

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

N

O

T

E

S

When does workload balancing occur?

• In a typical setup, where a message is put to a queue manager in the cluster,
destined for a backend server queue manager also in the cluster, there are three
places at which workload balancing may occur.

• The first of these is at either MQOPEN or MQPUT time depending on the bind
options associated with message affinity. If bind_on_open is specified, then this
means all messages will go to the same destination, so once the destination is
chosen at MQOPEN time, no more workload balancing will occur on the
message. If bind_not_fixed is specified, the messages can be sent to any of the
available destinations. The decision where to send the message is made at
MQPUT time, however this may change whilst the message is in transit.

• If a channel from a queue manager to a backend server goes into retry, then any
bind_not_fixed messages waiting to be sent down that channel will go through
workload balancing again to see if there is a different destination that is available.

• Once a message is sent down a channel, at the far end the channel code issues
an MQPUT to put the message to the target queue and the workload algorithm
will be called.

Workload management features

QUEUES
• Put allowed

– PUT(ENABLED/DISABLED)

• Utilising remote destinations
– CLWLUSEQ

• Queue rank
– CLWLRANK

• Queue priority
– CLWLPRTY

QUEUE MANAGER
• Utilising remote destinations

– CLWLUSEQ

• Availability status
– SUSPEND/RESUME

• Most recently used
– CLWLMRUC

CHANNELS
• Channel status

– INACTIVE, RUNNING
– BINDING, INITIALIZING, STARTING, STOPPING
– RETRYING
– REQUESTING, PAUSED STOPPED

• Channel network priority
– NETPRTY

• Channel rank
– CLWLRANK

• Channel priority
– CLWLPRTY

• Channel weighting
– CLWLWGHT

EXIT
• A cluster workload exit can be used

N

O

T

E

S

Workload management features

• There are a number of features in WebSphere MQ which affect the way the
default workload balancing algorithm works. With all these attributes set to their
default values, the workload balancing algorithm could be described as “round
robin, excluding failed servers”. More control is required in some scenarios to
allow more flexible interconnected cluster, or to allow greater scalability, and
some of these attributes will then need to be altered to achieve the behaviour
required.

• Only some attributes on a clustered queue or channel have an impact on the
workload balancing algorithm. In other words, not all attributes are propagated
around the cluster. Those that have an impact are shown on this page.

• If a queue is altered to be disabled for put, this change is propagated around the
cluster and is used by other queue managers in the cluster when choosing which
queues to send their messages to. A queue that is disabled for put is not a good
choice!

• A queue manager may be suspended from the cluster. This is another way of
removing queues on that queue manager from being chosen by the workload
balancing algorithm. Note, that if all queue managers in a cluster are suspended,
then they are all equally ‘good’ choices and the effects will be nullified.

N

O

T

E

S

Workload management features

• Channel status plays a part in the workload balancing algorithm, by indicating
when a server has failed. ‘Bad’ channel status suggests a problem and makes
that queue manager a worse choice. If the entire network is having a problem and
all channels are in RETRY state, then all queue managers are equally ‘good’
choices and the effects again will be nullified – where-ever the messages are
targeted, they will have to wait on the transmission queue for the network to come
back up.

• Network priority provides a way of choosing between two routes to the same
queue manager. For example, a TCP route and a SNA route, or an SSL route and
a non-SSL route. The higher network priority route is always used when it’s
channel is in a good state.

• All of the choices made by the queue manager using it’s default workload
balancing algorithm can be over-ridden by the use of a cluster workload exit. This
exit is provided with all the same information that the queue manager uses to
make its choices, and is also told which choice the default algorithm made, and
can then change that choice if it wishes. It can make decisions based on
message content, or other information that the queue manager is not aware, such
as business routing decisions.

Utilising remote destinations

• Allows remote queues to be chosen,
when a local queue exists

• MQSC

• DEFINE QL(CLUSQ) CLUSTER(IVANS)
CLWLUSEQ()

– LOCAL = If a local queue exists, choose it.
– ANY = Choose either local or remote queues.
– QMGR = Use the queue manager’s use-queue

value.

• ALTER QMGR CLWLUSEQ()
– LOCAL = If the queue specifies

CLWLUSEQ(QMGR) and a local queue exists,
choose it.

– ANY = If the queue specifies CLWLUSEQ(QMGR)
choose either local or remote queues.

• Messages received by a cluster channel
must be put to a local queue if one
exists

SERVERA

CLUSQ

SERVERB

CLUSQ

SERVERC

CLUSQ

SERVERD

CLUSQ

MQPUT CLUSQ

N

O

T

E

S

Utilising remote destinations

• Prior to WebSphere MQ V6, if a local instance of the named cluster queue
existed, it was always utilised in favour of any remote instances. This behaviour
can be over-ridden at V6 by means of the CLWLUSEQ attribute, which allows
remote queues to be chosen, when a local queue exists.

• The CLWLUSEQ attribute is available on queue definitions, to allow only specific
named queues to utilise this over-ride, or on the queue manager to over-ride this
behaviour for all cluster queues.

• DEFINE QL(CLUSQ) CLUSTER(IVANS) CLWLUSEQ()
– LOCAL If a local queue exists, choose it.

– ANY Choose either local or remote queues.

– QMGR Use the queue manager’s use-queue value.

• ALTER QMGR CLWLUSEQ()
– LOCAL If the queue specifies CLWLUSEQ(QMGR) and a local queue exists, choose it.

– ANY If the queue specifies CLWLUSEQ(QMGR) choose either local or remote queues.

• Any messages received by a cluster channel will be put to a local queue if one
exists in order to avoid looping round the cluster.

Rank and Overlapping Clusters

SERVERB

CLUSQ
(ALIAS)

RANK=1

SERVERC

CLUSQ
(ALIAS)

RANK=1

SERVERA SERVERD

CLUSQ

RANK=2

MQPUT CLUSQ

N

O

T

E

S

Rank and Overlapping Clusters

• Rank allows greater control of the routing of messages through overlapping
clusters.

• Without using rank, messages put to CLUSQ by applications connected to
SERVERA could bounce between the alias queues on SERVERB and
SERVERC. Using rank solves this “bouncing” problem because once messages
arrive on SERVERB or SERVERC, the CLUSQ instance on SERVERD is
available to the cluster workload management algorithm. As CLUSQ on
SERVERD is ranked higher it will be chosen.

Rank - basics

• Channels and queues with the highest rank are chosen preferentially
over those with lower ranks.

• MQSC
– DEFINE CHL(TO.ME) CHLTYPE(CLUSRCVR) CLUSTER(IVANS) … CLWLRANK()

• Range 0 – 9
• Default 0

– DEFINE QL(CLUSQ) CLUSTER(IVANS) CLWLRANK()
• Range 0 – 9
• Default 0

• Channel rank checked before queue rank

• Alternative to put disabling queues
– MQRC_NONE Vs MQRC_PUT_INHIBITED

Channel Rank example

SERVER1

DEMOQ

SERVER2

DEMOQ

SERVER3

DEMOQ

SERVER4

DEMOQ

SERVER2
ALTER CHL(TO.SERVER2)
CHLTYPE(CLUSRCVR) CLWLRANK(7)

CHL=0 CHL=7

CHL=7 CHL=3

SERVER3
ALTER CHL(TO.SERVER3)
CHLTYPE(CLUSRCVR)
CLWLRANK(7)

SERVER4
ALTER CHL(TO.SERVER4)
CHLTYPE(CLUSRCVR)
CLWLRANK(3)

N

O

T

E

S

Channel Rank example

• The channel rank for SERVER2 and SERVER3 are set higher than SERVER4.
As the default channel rank is zero, SERVER1 has the lowest rank.

• Once the ranks for channels on SERVER2, SERVER3 and SERVER4 have been
altered the messages are distributed equally between the highest ranked
destinations (SERVER2 and SERVER3).

Queue Rank example

SERVER4

DEMOQ

SERVER1

DEMOQ

SERVER2

DEMOQ

SERVER3

DEMOQ

CHL=0 CHL=7

CHL=7 CHL=3

SERVER1
ALTER QL(DEMOQ)
CLWLRANK(6)

Q=6 Q=1

Q=0 Q=0

SERVER2
ALTER QL(DEMOQ)
CLWLRANK(1)

N

O

T

E

S

Queue Rank example

• Once the ranks for queues on SERVER1 and SERVER2 have been changed the
all messages are delivered to SERVER2. This is because the cluster workload
management algorithm checks channel ranks before queue rank. The channel
rank check leaves SERVER2 and SERVER3 as valid destinations and because
the queue rank for DEMOQ on SERVER2 is higher than that on SERVER3 the
messages are delivered to SERVER2. Note that as channel rank is more powerful
than queue rank, the highest ranked queue (on SERVER1) is not chosen.

• It is important to note that destinations with the highest rank will be chosen
regardless of the channel status to that destination. This could lead to messages
building up on the SYSTEM.CLUSTER.TRANSMIT.QUEUE.

Utilising processing power

• SERVERB is twice as powerful as SERVERC
• How can I send SERVERB twice as many

messages?

• If more than one destination is valid, the round robin
algorithm sends messages in numbers proportional
to channel weights

• MQSC
– DEFINE CHL(TO.ME) CHLTYPE(CLUSRCVR) CLUSTER(IVANS) … CLWLWGHT()

• Range 1 – 99
• Default 50

SERVERA

SERVERB

CLUSQ

SERVERC

CLUSQ

MQPUT
CLUSQ

MORE MESSAGES

LESS MESSAGES

Channel Weight example

SERVER1

DEMOQ

SERVER2

DEMOQ

SERVER3

DEMOQ

SERVER4

DEMOQ

SERVER1
ALTER CHL(TO.SERVER2)
CHLTYPE(CLUSRCVR)
CLWLWGHT(20)

SERVER3
ALTER CHL(TO.SERVER3)
CHLTYPE(CLUSRCVR)
CLWLWGHT(20)

SERVER4
ALTER CHL(TO.SERVER4)
CHLTYPE(CLUSRCVR)
CLWLWGHT(10)

20 50

20 10

N

O

T

E

S

Channel Weight example

• In this example, the approximate percentage of messages distributed to each
queue manager are as follows…

• SERVER1 20%

• SERVER2 50%

• SERVER3 20%

• SERVER4 10%

• Weight enables the cluster workload management algorithm to favour more
powerful machines.

Cluster Workload Algorithm

• Queue PUT(ENABLED/DISABLED)
• Local instance (CLWLUSEQ)
• Channel rank (CLWLRANK)
• Queue rank (CLWLRANK)
• Channel Status

• INACTIVE, RUNNING
• BINDING, INITIALIZING, STARTING, STOPPING
• RETRYING
• REQUESTING, PAUSED, STOPPED

• Channel net priority (NETPRTY)
• Channel priority (CLWLPRTY)
• Queue priority (CLWLPRTY)
• Most recently used (CLWLMRUC)
• Least recently used with channel weighting (CLWLWGHT)

N

O

T

E

S

Cluster Workload Algorithm
• The full algorithm (taken from the Queue Manager Clusters manual) is as follows…

• 1. If a queue name is specified, queues that are not PUT enabled are eliminated as possible
destinations. Remote instances of queues that do not share a cluster with the local queue
manager are then eliminated. Next, remote CLUSRCVR channels that are not in the same
cluster as the queue are eliminated.

• 2. If a queue manager name is specified, queue manager aliases that are not PUT enabled
are eliminated. Remote CLUSRCVR channels that are not in the same cluster as the local
queue manager are then eliminated.

• 3. If the result above contains the local instance of the queue, and the use-queue attribute
of the queue is set to local (CLWLUSEQ(LOCAL)), or the use-queue attribute of the queue
is set to queue manager (CLWLUSEQ(QMGR)) and the use-queue attribute of the queue
manager is set to local (CLWLUSEQ(LOCAL)), the queue is chosen; otherwise a local
queue is chosen if the message was not put locally (that is, the message was received over
a cluster channel). User exits are able to detect this using the MQWXP.Flags flag
MQWXP_PUT_BY_CLUSTER_CHL and MQWQR.QFlags flag MQQF_CLWL_USEQ_ANY
not set.

• 4. If the message is a cluster PCF message, any queue manager to which a publication or
subscription has already been sent is eliminated.

• 4a. All channels to queue managers or queue manager alias with a rank (CLWLRANK) less
than the maximum rank of all remaining channels or queue manager aliases are eliminated.

• 4b. All queues (not queue manager aliases) with a rank (CLWLRANK) less than the
maximum rank of all remaining queues are eliminated.

N

O

T

E

S

Cluster Workload Algorithm (cont)

• 5. If only remote instances of a queue remain, resumed queue managers are chosen in
preference to suspended ones.

• 6. If more than one remote instance of a queue remains, all channels that are inactive
(MQCHS_INACTIVE) or running (MQCHS_RUNNING) are included.

• 7. If no remote instance of a queue remains, all channels that are in binding, initializing,
starting or stopping state (MQCHS_BINDING, MQCHS_INITIALIZING,
MQCHS_STARTING, or MQCHS_STOPPING) are included.

• 8. If no remote instance of a queue remains, all channels in retrying state
(MQCHS_RETRYING) are included.

• 9. If no remote instance of a queue remains, all channels in requesting, paused or stopped
state (MQCHS_REQUESTING, MQCHS_PAUSED and MQCHS_STOPPED) are included.

• 10. If more than one remote instance of a queue remains and the message is a cluster PCF
message, locally defined CLUSSDR channels are chosen.

• 11. If more than one remote instance of a queue remains to any queue manager, channels
with the highest NETPRTY value for each queue manager are chosen.

• 11a. If a queue manager is being chosen: all remaining channels and queue manager
aliases other than those with the highest priority (CLWLPRTY) are eliminated. If any queue
manager aliases remain, channels to the queue manager are kept.

• 11b. If a queue is being chosen: all queues other than those with the highest priority
(CLWLPRTY) are eliminated, and channels are kept.

N

O

T

E

S

Cluster Workload Algorithm (cont)

• 11c. All channels except a number of channels with the highest values in
MQWDR.DestSeqNumber are eliminated. If this number is greater than the maximum
allowed number of most-recently-used channels (CLWLMRUC), the least recently used
channels are eliminated until the number of remaining channels is no greater than
CLWLMRUC.

• 12. If more than one remote instance of a queue remains, the least recently used channel is
chosen (that is, the one with the lowest value in MQWDR.DestSeqFactor). If there is more
than one with the lowest value, one of those with the lowest value in
MQWDR.DestSeqNumber is chosen. The destination sequence factor of the choice is
increased by the queue manager, by approximately 1000/(Channel weight) (CLWLWGHT).
The destination sequence factors of all destinations are reset to zero if the cluster workload
attributes of available destinations are altered, or if new cluster destinations become
available. Also, the destination sequence number of the choice is set to the destination
sequence number of the previous choice plus one, by the queue manager.

• Note that the distribution of user messages is not always exact, because administration and
maintenance of the cluster causes messages to flow across channels. This can result in an
apparent uneven distribution of user messages which can take some time to stabilize.
Because of this, no reliance should be made on the exact distribution of messages during
workload balancing.

QM3

QM2

QM1

MQSUB
‘Price/Fruit/+’

MQGET

Publish/Subscribe Topologies

• Local Queuing -> Distributed Queuing

• Publish/Subscribe -> Distributed Publish/Subscribe

• Application API calls remain the same

• Administration changes have the effect

MQOPEN
‘Price/Fruit/Apples’

MQPUT

MQSUB
‘Price/Fruit/+’

MQGET

N

O

T

E

S

Publish/Subscribe Topologies - Notes

• Just as queuing can be done on a single queue manager or can be done by
moving messages between multiple queue managers – known as distributed
queuing – so can publish/subscribe. We call this distributed publish/subscribe.

• This is the concept (and the features to implement it) where an application may be
publishing to a topic on QM1 and other applications may be subscribing on that
topic on others queue managers, here QM2 and QM3, and the publication
message needs to flow to those other queue managers to satisfy those
subscribers.

• The application code stays the same, you still call MQSUB or MQOPEN and
MQPUT, the difference, as with distributed queuing is in the administrative set-up
of your queue managers.

• We are going to introduce the way clustering can be used to set up your queue
managers to publish messages to another queue manager.

Pub/Sub Clusters

Starting MQSC for queue manager TEST1.

DEFINE TOPIC(APPLES)
TOPICSTR(‘Price/Fruit/Apples’)
CLUSTER(DEMO)

DISPLAY SUB(*) SUBTYPE(PROXY) ALL
1 : DISPLAY SUB(*) SUBTYPE(PROXY) ALL

AMQ8096: WebSphere MQ subscription inquired.
SUBID(414D5120514D312020202020202020204F57864820000F02)
SUB(SYSTEM.PROXY.QM2 DEMO Price/Fruit/Apples)
TOPICSTR(Price/Fruit/Apples) TOPICOBJ()
DEST(SYSTEM.INTER.QMGR.PUBS) DESTQMGR(QM2)
DESTCLAS(PROVIDED) DURABLE(YES)
SUBSCOPE(ALL) SUBTYPE(PROXY)

’

MQPUT

’

MQSUB ’

MQSUB

TOPIC attributes

CLUSTER
SUBSCOPE
PUBSCOPE
PROXYSUB

N

O

T

E

S

Pub/Sub Clusters - Notes
• A pub/sub cluster is a cluster of queue managers, with the usual CLUSRCVR and CLUSSDR definitions,

but that also contains a TOPIC object that has been defined in the cluster.
• With a cluster you have “any-to-any” connectivity. There are direct links between all queue managers in

the cluster. This provides good availability for the delivery of messages, if one route is unavailable, there
may well be another route to deliver the messages to the target subscription.

• With a TOPIC object defined in the cluster, an application connected to one queue manager in the cluster
can subscribe to that topic or any node in the topic tree below that topic and receive publications on that
topic from other queue managers in the cluster.

• This is achieved by the creation of proxy subscriptions on the queue managers in the cluster, so that
when a publication to the topic in question happens on their queue manager, they know to forward it to
the appropriate other members of the cluster.

• You can view these proxy subscriptions through the same commands we saw earlier. By default proxy
subscriptions are not shown to you because the default value for SUBTYPE is USER. If you use
SUBTYPE(ALL) or SUBTYPE(PROXY) you will see these subscriptions.

• There are a few attributes that are specifically related to Distributed Publish/Subscribe. PUBSCOPE and
SUBSCOPE determine whether this queue manager propagates publications to queue managers in the
topology (pub/sub cluster or hierarchy) or restricts the scope to just its local queue manager. You can do
the equivalent job programmatically using MQPMO_SCOPE_QMGR / MQSO_SCOPE_QMGR.

• PROXYSUB is an attribute that controls when proxy subscriptions are made. By default it has value
FIRSTUSE and thus proxy subscriptions are only created when a user subscription is made to the topic.
Alternatively you can have the value FORCE which means proxy subscriptions are made even when no
local user subscriptions exist.

Cluster Topics

• Required for publishing to remote Pub/Sub Cluster QMs
• Pub/Sub Cluster exists when there are one or more cluster topics

– Cluster topic is pushed to ALL queue managers in the cluster
– Channels are automatically defined between ALL queue managers in the cluster

• Not to be confused with a subscriber
• Define

– DEFINE TOPIC(FOOTBALL) TOPICSTR(/global/sports/football) CLUSTER(SPORTS)

• Display
– DISPLAY TOPIC(FOOTBALL)
– DISPLAY TOPIC(FOOTBALL) TYPE(LOCAL)
– DISPLAY TOPIC(FOOTBALL) TYPE(ALL)

• Local objects only
– DISPLAY TOPIC(FOOTBALL) TYPE(CLUSTER)
– DISPLAY TOPIC(FOOTBALL) CLUSINFO
– DISPLAY TCLUSTER(FOOTBALL)

• Cluster objects only
– DISPLAY TOPIC(FOOTBALL) TYPE(ALL) CLUSINFO

• Both local and cluster objects

N

O

T

E

S

Cluster Topics
• Cluster TOPICS are regular TOPIC objects that are advertised to the cluster. When a

cluster TOPIC is defined, the cluster in which it is defined becomes a Pub/sub Cluster.
• Like traditional clusters, Pub/sub clusters are designed for many-many queue manager

connectivity. In traditional clusters, cluster objects are automatically defined based on usage
(e.g. put to a queue). The usage model is based on a putter using a set of cluster queues
(not necessarily defined on all queue managers in the cluster). Therefore in traditional
clusters it is unlikely that all queue managers will actually be connected to all other queue
managers by auto-defined channels.

• In Pub/sub clusters, cluster objects are automatically defined before usage, at the time the
first cluster TOPIC is defined in the cluster. This is because the usage model is different to
that of traditional clusters. Channels are required from any queue manager to which a
subscriber (for a cluster topic) is connected to all other queue managers so that a proxy-
subscription can be fanned out to all the queue managers. Channels are also required back
from any queue manager where a publisher (for a cluster topic) is connected to those queue
managers which have a connected subscriber. Therefore in Pub/sub Clusters it is much
more likely that all queue managers will actually be connected to all other queue managers
by auto-defined channels. It is for this reason that, in Pub/sub clusters, cluster objects are
automatically defined before usage.

• To define a cluster TOPIC, you must provide a topic object name, topic string, and cluster
name. The queue manager on which the topic is defined should be a member of the
specified cluster.

• When displaying cluster topics, there are two types:
– Local: Directly administrable objects.
– Cluster: Cluster cache records, based upon local objects.

Cluster Topic Hosts

• Cluster Topics can be defined on any queue manager in the
cluster

– Full or Partial Repositories

• Cluster topics can be defined on more than one queue manager
– E.g.

• QM1 - DEF TOPIC(SPORTS) TOPICSTR(/global/sports) CLUSTER(DEMO)

• QM2 - DEF TOPIC(SPORTS) TOPICSTR(/global/sports) CLUSTER(DEMO)

– Multiple definitions ok
• But not necessarily concurrent

– If topic host is lost, cluster topic will remain usable for up to 30 days

– RESET CLUSTER the lost queue manager

– … but definitions should be identical
• Behaviour is undefined where attributes conflict

• Conflict reported
– AMQ9465 / AMQ9466

– CSQX465I / CSQX466I

N

O

T

E

S

Cluster Topic Hosts
• A cluster topic host is a queue manager where a clustered TOPIC object is defined.

Clustered TOPIC objects can be defined on any queue manager in the pub/sub cluster.
When at least one clustered topic exists within a cluster the cluster is a pub/sub cluster. It is
recommended that all clustered TOPIC objects be identically defined on two queue
managers and that these machines be highly available. If a single host of a clustered TOPIC
object is lost (e.g. due to disk failure), any cluster topic cache records based on the
clustered topic object that already exist in the cluster cache on other queue managers, will
be usable within the cluster for a period of up to 30 days (or until the cache is refreshed).
The clustered TOPIC object can be redefined on a healthy queue manager. If a new object
is not defined, up to 27 days after the host queue manager failure, all members of the
cluster will report that an expected object update has not been received (AMQ9465 /
AMQ9466 or CSQX465I / CSQX466I).

• There is no requirement that full repositories and topic hosts overlap, or indeed that they are
separated. In pub/sub clusters that have just two highly available machines amongst many
machines, it would be recommended to define both the highly available machines as full
repositories and cluster topic hosts. In pub/sub clusters with many highly available
machines it would be recommended to define full repositories, and cluster topic hosts on
separate highly available machines, so that the operation and maintenance of one function
can be managed without affecting the operation of other functions.

• Although there is nothing wrong with having multiple identical definitions for a topic within a
cluster, it adds administration overhead when changing, so is probably a bad idea.
Definitions must be kept consistent or it could result in unpredictable behavior (as indicated
by warning messages in logs).

Pub/Sub Cluster Architecture 1

FR

QMA - DEFINE TOPIC(SPORTS) TOPICSTR(/global/sports) CLUSTER(DEMO)

QM
F

QMA QMB

QM
C

QM
D

QM
E

FR

SPORTS

QMA - DIS TOPIC(SPORTS) TYPE(ALL)
Local topic
Cluster topic

QMD - DIS TOPIC(SPORTS) TYPE(ALL)
Cluster topic

Pub/Sub Cluster Architecture 2

QM
F

QMA QMB

QM
C

QM
D

QM
E

SUB(/global/sports/football/*)

PSUB
QME

PSUB
QME

PSUB
QME

PSUB
QME

PSUB
QME

PUB(/global/sports/football/news)

SUB(/global/sports/*)

PSUB
QMF

PSUB
QMF

PSUB
QMF

PSUB
QMF

PSUB
QMF

N

O

T

E

S

Pub/Sub Cluster Architecture 2

• We start this foil assuming that Pub/sub Cluster with cluster topic with topic string
/global/sports already exists.

• The proxy-subscriptions are fanned out from the queue manager to which the
subscriber is connected to all other queue managers.

• Notice that…
– the cluster topic string is /global/sports.

– the subscribers’ topic strings are /global/sports/* and /global/sports/football/*

• Proxy-subscriptions are sent to other queue managers in the Pub/sub cluster for any topic string
below the cluster topic string.

– the publisher’s topic string is /global/sports/football/news

• Publications are sent based on local proxy-subscriptions

Incorrectly deleted queue managers

RESET
CLUSTER

COMMAND

N

O

T

E

S

Incorrectly deleted queue managers

• If a queue manager is deleted without first removing it from the cluster, then the
rest of the queue managers in the cluster will still believe that the queue manager
exists and will retain this information for upto 90 days.

• Another way is required to tell the cluster to remove the information about the
deleted queue manager. The RESET CLUSTER command can be used to force
a queue managers definitions to be deleted from the cluster. It has to be run on a
Full Repository, as the Full Repositories know about all the cluster resources
owned by the queue manager being removed and can then inform the other
queue managers in the cluster to delete them.

• Quite often we see a situation where the deleted queue manager is recreated
using a script, however the cluster treats this as a different queue manager, as
each queue manager is assigned a unique queue manager identifier when it is
created. This can lead to duplicate queue managers in the cluster. Once again
the RESET CLUSTER command can be used to remove the old instance of the
queue manager by deleting it by its queue manager identifier (QMID). The ability
to force remove a queue manager by QMID was introduced in V5.3.

Refreshing repository information

Repository Task

Channel
Code

Repository Cache

Repository Task

Repository Cache

Channel
Code

P1 F1

Qmgr F1
TO.F1

Q = MY.Q
Qmgr S1

Qmgr P1
TO.P1

Qmgr F1
TO.F1

Sub
MY.Q

Q = MY.Q
Qmgr S3

Q = MY.Q
Qmgr S1

Sub
MY.Q

Q = MY.Q
Qmgr S2

Qmgr P1
TO.P1

REFRESH CLUSTER COMMAND

N

O

T

E

S

Refreshing repository information

• The diagram on the previous page shows a situation where the information held in the
Partial Repositories cluster cache has become out of sync with the information held on the
Full Repository. In this example, the Partial Repository believes that a queue called MY.Q
is hosted by queue managers S1 and S3, but the Full Repository knows it is actually hosted
by S1 and S2.

• This discrepancy can be fixed by issuing the REFRESH CLUSTER command on the Partial
Repository. The command tells the Partial Repository to delete the information it has built
up about the cluster. This information will then be rebuilt over time, by requesting it from the
Full Repositories.

• It is not normally necessary to issue a REFRESH CLUSTER command except in one of the
following circumstances:

– Messages have been removed from either the SYSTEM.CLUSTER.COMMAND.QUEUE, or from another queue
manager's SYSTEM.CLUSTER.TRANSMIT.QUEUE, where the destination queue is
SYSTEM.CLUSTER.COMMAND.QUEUE on the queue manager in question.

– Issuing a REFRESH CLUSTER command has been recommended by IBM® Service.
– The CLUSRCVR channels were removed from a cluster, or their CONNAMEs were altered on two or more Full

Repository queue managers while they could not communicate.
– The same name has been used for a CLUSRCVR channel on more than one queue manager in a cluster, and as a

result, messages destined for one of the queue managers have been delivered to another. In this case, the duplicates
should be removed, and then a REFRESH CLUSTER command should be issued on the single remaining queue
manager that has the CLUSRCVR definition.

– RESET CLUSTER ACTION(FORCEREMOVE) was issued in error.
– The queue manager has been restarted from an earlier point in time than it last finished, (for example, by restoring

backed up data.)

Implementation recommendations

• Be clear about your requirements
– Reduced system administration?
– Workload balancing?

• Read the Queue Manager Clusters manual
– The tasks sections are useful – Especially how to remove a queue manager from a cluster

• Helps to experiment in a development/test environment
– Before using commands (especially REFRESH CLUSTER) read the whole section for that

command in the MQSC manual

• Usage notes contain important info
• Naming conventions

– No one recommended convention - consistency is the key

• Document processes for production system changes
– Add/remove queue manager to/from cluster
– Take queue manager offline for maintenance

• Start small
• Have two Full Repositories

– Be careful about connecting them
– Consider where you should host them

Implementation recommendations (continued)

• Be careful defining cluster topics in existing clusters
• Monitor the SYSTEM.CLUSTER.TRANSMIT.QUEUE

– Per channel CURDEPTH (V6) – DIS CHSTATUS XQMSGSA

• When debugging check that channels are healthy
– Definition propagation: Path from one QM to another via FRs
– Application: Path from application to queue manager hosting queue.

• Consider how you will administrate and debug
– Monitor CSQX4.../AMQ94.. messages
– MQRC_UNKNOWN_OBJECT_NAME
– “Where’s my message?” (when there are now n cluster queues)

• Bind-not-fixed gives better availability
– By default, bind-on-open is used

• Further Information in the Infocenter
– Queue Manager Clusters
– Script (MQSC) Command Reference
– Publish/Subscribe User’s Guide

