
CICS and WAS on z/OS:
New Integration Capabilities

Leigh Compton
IBM Advanced Technical Skills
lcompton@us.ibm.com



2

Abstract

• One advantage of running Java workloads in the z/OS distribution of 
WebSphere Application Server is the ability to provide connectivity to 
CICS applications with a very high capacity and high availability. New 
capabilities in WebSphere Application Server, CICS Transaction 
Gateway, and even CICS Transaction Server itself provide additional 
options for configuring the connections between the Java applications 
and CICS applications. The speaker will describe the use of CICS
Transaction Gateway and Optimized Local Adapters in WAS, 
capabilities of each, and considerations for choosing when to use one 
versus the other. 



3

Agenda

• WAS and CICS Integration
• Transactional Interoperability

• Transactionality, unit-of-work

• Java calling CICS
• CICS calling Java

• Web services
• CICS Transaction Gateway
• WebSphere Optimized Local Adapter (WOLA)



4

Java and CICS

• Goal is interoperability
• With traditional qualities of service

• Reliability
• Availability
• Transactional integrity
• Security

• Calling CICS applications from WAS:
• Web services
• CICS TG
• WebSphere Optimized Local Adapter

• Calling Java applications from CICS:
• Web services
• WebSphere Optimized Local Adapter



5

Web Services

• Architecture for
• Application to application

• Communication
• Interoperation

• Definition:
• Web Services are software 

components described via WSDL
that are capable of being accessed 
via standard network protocols 
such as SOAP over HTTP

• WS-I.org (Web Services 
Interoperability Organization):
• An organization to ensure 

interoperability The entire industry is agreeing 
on one set of standards !!

Client
Application

Web
Service

UDDI
Registry

publish
WSDL find

WSDL

bind, invoke

SOAP

   Browser
SOAP

Browser
       SOAP

Service
Broker

Service
Provider

Service
Requester

     



6

Notes:
• Web services describe the role of a service provider which is some entity that has exposed an 

available business function.
• There is also the role of a service requester: an entity that would like to consume the business 

function made available by the service provider.
• The service provider and service requester communicate using SOAP (Simple Object Access 

Protocol) over HTTP (HyperText Transfer Protocol).
• WSDL (Web Service Description Language) is used to describe the interface to a business 

function.  The WSDL includes a description of the available business function, what gets passed to 
the business function, what gets returned from the business function, the protocol (e.g. SOAP over 
HTTP), and the location of the Web service (also called the endpoint).

• CICS supports both SOAP over HTTP and SOAP over WMQ.
• Initially, most people thought the primary use of Web services would be to do business over the 

Internet.  Today, the primary use of Web services is to provider interoperability between business 
entities within a company.  In an Internet-based Web service environment. Information about Web 
services are often placed in a business registry.  This is similar to a telephone book.  Potential 
users of the business function can do a ‘lookup’ in the business registry and ‘find’ someone that 
offer the business function they need.  They can solicit the interface to the business function in 
question, so they can start doing business with that business using SOAP over HTTP.

• The WS-I (Web Service Interoperability Organization) was formed by over 170 companies to 
ensure everyone interprets the Web service standards the same way and that we really do achieve 
the interoperability that Web services promises.

• We, in the IT industry, have tried several techniques to interoperate in that past.  This time around, 
everyone is agreeing on a single set of standards.



7

CICS Support of Web Service Standards

• XML Encryption Syntax and Processing interoperability with entities using XML
• XML Signature Syntax and Processing interoperability with entities using XML
• SOAP 1.1 and 1.2 to send and receive Web services messages
• WSDL 1.1 and 2.0 to describe Web service interfaces (WSDL 2.0 in TS 3.2)
• WSDL 1.1 Binding Extension for SOAP 1.2     for interoperability with interfaces
• WS-I Basic Profile 1.1 for interoperability between providers and requesters 

using SOAP 
• WS-I Simple SOAP Binding Profile 1.0  for interoperability using SOAP
• WS-AtomicTransaction for propagating transactional context
• WS-Coordination coordinating transaction outcome
• WS-Security authentication and encryption of all or part of a

message, username token profile 1.0, X.509
Certificate Token

• WS-Trust for establishing trust relationships (in TS 3.2)
• MTOM / XOP for efficient handling of large messages (in TS 3.2)
• SOAP 1.1 Binding for MTOM 1.0 to describe the use of MTOM (in TS 3.2)
• WS-Addressing to indicate request and response routing (in TS 4.1)

• Both HTTP and WebSphere MQ network layers supported
• HTTP 1.0 and 1.1 supported
• CICS applications acting as providers or requesters are agnostic to transport mechanism used



8

Notes:

• This is a list of the Web service-related specifications that CICS supports.
• More details on these in the CICS Information Center.



9

Web Services:  CICS as a Provider 

HFS

WSDL

WSBind

CICS Web services
assistant

WEBSERVICE

pipeline
config

URIMAP

CICS TSTCPIPSERVICE

CPIHCWXNService
Requester

URIMAP
matching

CSOL

Pipeline

handlers

handlers

handlers

SOAP message

data mapping

Business
Logic

Language
structure

dynamic
install

dynamic
install

PIPELINE



10

Notes
This diagram illustrates the entire flow and the CICS resources necessary to allow CICS to function as a service 
provider.

The Web services artifacts are built using the CICS Web Services Assistant.  The CICS Web Services Assistant can 
be used in two scenarios. It can take the language structure of the business logic interface (a COMMAREA or 
container layout) and generate a WSDL document and a WSBind file. The WSDL document will be used to create a 
service requester. The CICS Web Services Assistant can also take a WSDL document as input and generate WSBind
file and a language structure which will be used as the interface for new business logic or a wrapper program. The 
WSDL and WSBind files reside on HFS. The pipeline configuration file also resides on HFS. The PIPELINE resource 
definition points to the pipeline configuration file. From the PIPELINE resource, a WEBSERVICE resource and a 
URIMAP resource can be automatically installed.

When a SOAP message arrives through HTTP, the web attach transaction (CWXN) will scan the incoming HTTP 
request and find a matching URIMAP resource. When the URIMAP specifies USAGE(PIPELINE) it will attach a 
pipeline transaction called CPIH. CPIH will start the pipeline processing, invoke the handler programs according to the 
pipeline configuration file. It will use the information from the WEBSERVICE resource and convert the SOAP message 
into a language structure and LINK to the target application via COMMAREA or a CHANNEL. When the target 
application returns, the output language structure is converted back to a SOAP message and be passed back through 
the pipeline and will be sent back to the requester. The transport can also be WebSphere MQ. 

The target application can be run under a different transaction id, and can be routed to a different CICS system 
connected via MRO. 



11

CICS TS
User Transaction

data mapping

Business Logic

Pipeline

handlers

handlers

handlers
PIPELINE

WEBSERVICE

dynamic
install

HFS

WSBind

WSDL

pipeline
config

CICS Web services
assistant

Service
Provider

SOAP message

Language
structure

EXEC CICS INVOKE    
WEBSERVICE

Web services: CICS as Requester



12

Notes

This diagram illustrates the flow and the CICS resources necessary to allow CICS to function as a 
service requester.

The WSDL document for the remote service provider will be processed through the Web services 
assistant. The utility will generate a language structure, which will be used as interface from the 
service requester program, and a WSBind file. There will be a PIPELINE resource pointing to a 
pipeline configuration file, and a WEBSERVICE resource. 

The service requester program will issue an EXEC CICS INVOKE WEBSERVICE command, passing 
the request language structure via a CHANNEL interface. Information in the corresponding 
WEBSERVICE resource will be used to convert the language structure into a SOAP message. The 
SOAP message will be passed through the pipeline, invoking handler programs according to the 
pipeline configuration file. It will send the request SOAP message to the remote service provider 
either via HTTP or WebSphere MQ. When the response SOAP message is received, it will be passed 
back through the pipeline, converted back into a language structure, and passed back to the service 
requester program.



13

WebSphere MQ Transports

CICS TS
User Transaction

Business Logic

Pipeline

Service
Provider

WebSphere
MQ

SOAP
message

EXEC CICSEXEC CICSEXEC CICSEXEC CICS
INVOKE WEBSERVICEINVOKE WEBSERVICEINVOKE WEBSERVICEINVOKE WEBSERVICE

URIMAP

CICS TS 

CPIQCPIL

Service
Requester

URIMAP
matching

CKTI

Pipeline

SOAP
message

WebSphere
MQ

Business
Logic

PIPELINE

WEBSERVICE

PIPELINE

WEBSERVICE



14

Notes

When using WMQ as a CICS Web service transport, the client places a SOAP message on a WMQ 
queue.  In addition to the SOAP message, the client also places path information in the WMQ 
message header called an RFH2 header.

The CICS Systems Programmer would need to configure CICS to listen on a specific queue where 
the Web service requests will arrive.  The work of listening on the queue is performed by the CKTI 
transaction.  Once the item is obtained from the queue, the CPIL transaction compares the path in the 
RFH2 header with the paths specified in the URIMAP definitions. From then on, the flow is the same 
as with HTTP with the exception that the pipeline is processed under the CPIQ transaction instead of 
CPIH.

When CICS is the requester using WMQ as the transport, the application programmer uses the same 
commands as when using HTTP.  They place the data to be passed to the Web service in a container, 
then invoke the INVOKE WEBSERVICE command.  The WEBSERVICE specified after the 
WEBSERVICE keyword indicates to CICS as to whether to use HTTP or WMQ as a transport.



15

Web Service Invocation API

• EXEC CICS INVOKE WEBSERVICE( ) CHANNEL( ) URI( ) 

OPERATION( )

• WEBSERVICE: name of the Web Service to be invoked
• CHANNEL: name of the channel containing data to be 

passed to the Web Service (DFHWS-DATA container) 
• URI: Universal Resource Identifier of the Web Service 

(optional)
• OPERATION: name of the operation to be invoked
• V3.2 – timeout value (RESPWAIT) can be specified on the 

PIPELINE definition



16

Notes

The purpose of the command is to invoke the web service named and pass the channel into which the 
relevant containers have been put. 

The container DFHWS-DATA must be created by the requesting application before the INVOKE 
WEBSERVICE command is issued.

The same container, DFHWS-DATA, will hold the response, if any, from the Web Service.

If a fault is returned from the Web service provider, CICS will provide the CICS application program with 
appropriate RESP and RESP2 values.



17

Web services: features and benefits

• Open, standards-based interoperability
• Supported by many platforms

• WSDL clearly defines interfaces
• Rich set of QOS options

• Security
• Transactionality
• Policies



18

About the CICS Transaction Gateway

• Offers high performance access to CICS TS
• Secure
• Scalable

• Provides J2EE™ standards-based connectivity
• Insures maximum transactional integrity

• Two-phase-commit transactional integration between J2EE application 
servers and CICS

• CICS TG for z/OS
• Supports local and remote Java clients
• Provides remote client connectivity for C applications

• CICS TG for Multiplatforms
• Supports local and remote Java clients
• Supports local clients coded in C, C++, COBOL, and Visual Basic



19

Notes
IBM CICS Transaction Gateway provides highly flexible, security-rich and scalable access to CICS 
applications. It requires minimal changes to CICS systems and usually no changes to existing CICS 
applications.

CICS TG supports the following platforms:
■ IBM z/OS
■ IBM AIX
■ Linux on Intel, IBM POWER or IBM System z
■ Microsoft Windows
■ Sun Solaris on the SPARC platform
■ HP-UX on RISC or Itanium platforms

Connectivity is provided on these platforms from all supported WebSphere Application Server 
environments to all supported CICS servers. The strategic SOA interface within the CICS Transaction 
Gateway is the J2EE Connector Architecture (JCA) interface. For maximum flexibility, programming
interfaces are also provided in Java, C, C++, COM (for Microsoft Visual Basic) and COBOL.

CICS Transaction Gateway provides an XA-capable JCA ECI resource adapter. A J2EE application 
can invoke a CICS application using a two-phase commit transaction. This capability enables CICS 
Transaction Gateway to fully participate in a global transaction, where units of work can be 
coordinated across different resource managers,



20

About the J2EE Connector Architecture

• Component of the Java 2 Platform Enterprise Edition specification

• alongside other standard services, such as JMS, JDBC, and JNI
• Standard programming interface to all Enterprise Information Systems (EIS), 

such as CICS, IMS, and SAP
• Delegated management of Connections, Transactions, and Security for better, 

faster application development

• Widely supported in educational material and software tooling

JCA
Resource
Adapter

EIS

System
Contracts

JEE Application Server

�Connection Management
�Transaction Management
�Security Management



21

Notes

CICS Transaction Gateway supports the standard JCA, version 1.5 specification as its strategic 
interface. As a component of the J2EE specification, along with other standard services, the JCA 
provides a standard programming interface to all enterprise information systems (EISs). Using JCA 
offers two significant development advantages. First, it enables J2EE developers to program to a 
standard  interface that is widely supported in educational materials and software tooling from IBM 
and other vendors. Second, JCA provides delegated management of connection pooling, 
transactional scope and security control so that J2EE developers don’t have to develop these 
capabilities within the application. Together, these benefits mean better applications can be developed 
faster and more easily.



22

CICS access via CICS TG

CICS TS

CICS 
Program

CICS 
Transaction 

Gateway

CICS TG
Servlet, JSP, 

EJB
WAS

J
2
C

Applet, Any 
Java Pgm

J
2
C

Many Languages, 
Many Platforms

WAS=WebSphere Application Server



23

CICS TG Deployment with WAS on z/OS

CICS

z/OS

CICS TG

Assembler, 
COBOL, 
PL/1, C, 

C++, Java, 
REXX

WAS

EJBEJB

TCP/IP

E
X

C
I or IP

IC

• CICS TG deployed in its own 
address space.

• Network connection between 
resource adapter in WAS and 
CICS TG daemon

• EXCI (MRO) or IPIC 
connection from CICS TG 
daemon to CICS

Daemon Mode

JC
A

Resource 
Adapter



24

CICS TG Deployment with WAS on z/OS

CICS

z/OS

Assembler, 
COBOL, 
PL/1, C, 

C++, Java, 
REXX

WAS

EJBEJB

JC
A

EXCI or IPICCICS TG

• CICS TG code deployed 
within WAS address spaces.

• EXCI or IPIC connection 
originating in WAS into CICS.

Local Mode

Resource 
Adapter



25

Notes

For the highest quality of service, users can run CICS Transaction Gateway on the IBM z/OS operating system. In the 
z/OS environment, CICS Transaction Gateway takes full advantage of the IBM Parallel Sysplex and workload 
management capabilities of the platform. It can support thousands of transactions per second by using multiple 
gateways and by exploiting memory-based external CICS interface (EXCI) pipes or TCP/IP socket connections to 
CICS systems that are colocated on the same logical partition (LPAR).

CICS Transaction Gateway for z/OS V7.2 provides additional XA support for global transactions from WebSphere
Application Server through extending cloned gateway configurations across the Parallel Sysplex. This improved 
capability allows the building of a highly available connector solution—one capable of integration with the z/OS Sysplex
Distributor and Resource Recovery Services. This removes the single point of failure at the LPAR level while at the 
same time providing for flexible naming of each CICS server supporting the highly available deployment.



26

CICS TG V7.2 - High availability

Distributing
Stack

Cluster
address 

XCF

XCF

Port
sharing

Sysplex

Coupling
Facility

I
P
A

z/OS LPAR

CTG EXCI

ECI

V

V
I
P
A

WebSphere App Server

Server
CICS Resource

Adapter

Advertised

DVIPA

CICS 
AOR

CICS 
AOR

C
P
S
M

DPL
CICS

Routing 
Region

Port
sharing

I
P
A

CTG
EXCI

V

CICS 
AOR

CICS 
AOR

C
P
S
M

DPL
CICS

Routing 
Region

Dynamic routing of DPL via 
CICSPlex SM dynamic 
DPL

Failover
only

Cloned Gateway daemons 
using shared port for 
availability and scalability

WebSphere JCA pool 
manager handles 
connection re-use and 
persistence

WLM

WLM server specific health
feeds back CICS availability 
to Sysplex Distributor



27

CICS TG V7.2 – High Availability

Sysplex
Distibutor

tcp/ip

Sysplex

Coupling
Facility

CICS1B

V
I
P
A

CICS2B

z/OS LPAR A

CICS1A

CICS2A

CTG1A

CTG2A

CTG1B

CTG2B

z/OS LPAR B

Port
sharing

Port
sharing

tcp/ip

tcp/ip

� Default server
– Supported on all platforms

– Replacement for DFHJVSYSTEM_00 
supporting IPIC and EXCI servers

– Supported for synconreturn and extended 
ECI requests (not XA)

� Server name remapping (z/OS only)
– Mechanism to redirect ECI requests to a 

defined CICS server when using IP load 
balancing

– CICS server can be local to the LPAR or 
Gateway

– Supported for synconreturn and extended 
ECI requests (not XA)

– Two supported options:

1. Logical server definitions

2. CICS request exit

� Sysplex XA recovery (z/OS only)
� Gateway cloning supported across multiple 

LPARs with XA transactions

� Gateway group defined using applid naming 
convention

Gateway
group

RRSWLM



28

CICS TG: features and benefits

• Simple programming model 
• Access to COMMAREA and Channel applications
• Rich set of client APIs for different runtime environments 
• Support for standard network protocols 
• Support for different operating platforms 
• Managed qualities of service and high availability 
• Access to statistics and monitoring information 
• Support for two-phase commit transactions from a J2EE 

application server 



29

WOLA: what is it?

• New cross-memory communication structure for WAS v7
• z/OS only
• New API for non-Java applications

• Inbound invocation of Java applications
• From batch
• From USS
• From CICS

• And a new Java Connector Architecture adapter
• Outbound invocation of CICS applications



30

Notes

• The WebSphere Application Server for z/OS optimized local adapters (WOLA) is a relatively 
low-level communication mechanism that allows cross-address space communications from 
WebSphere outbound, and from external address spaces inbound to WebSphere.

• WebSphere Application Server for z/OS already has a cross-memory communication structure 
used internally. It makes use of the Daemon server’s shared memory that allows address 
spaces within that cell on that LPAR to communicate cross-memory.

• Think of WOLA as an extension to that capability. The extension is the ability of external 
address spaces to participate just as address spaces inside the cell can.



31

WOLA: Reuse of Java applications

WAS AppServer

z/OS

CICS

Assembler, 
COBOL, 
PL/1, C, 

C++

WOLA APIs EJBEJB

Batch

Assembler, 
COBOL, 
PL/1, C, 

C++

WOLA APIs



32

Notes

• Generally speaking, when people think of WAS they think of the applications inside of WAS 
being users of data and services outside of WAS. But that’s changing. More and more we find 
that people have a desire to leverage EJB assets inside of WAS as part of a broader service 
architecture.

• It makes sense -- WAS is a powerful Java EE runtime environment; WAS provides a wide 
range of key services such as security, transaction and container services. EJBs written to 
leverage the power of the WAS platform can in turn be leveraged by things outside of WAS.

• The issue is access to the EJBs inside of WAS.
• WOLA was created to address the specific need to access WAS z/OS EJBs in a highly efficient 

and high throughput manner.
• So inbound to WAS z/OS the original intent. But the developers did not wish to create a partial
• solution, so they made WOLA bi-directional … both inbound to WAS z/OS and outbound from 

WAS z/OS.
• WOLA is not a brand new technology. It’s actually an extension of an existing WAS z/OS
• communication mechanism called “Local Comm”.
• WOLA supplies a set of modules that provide the APIs and facilities to connect to the extension 

of the Local Comm architecture. An external address space (batch program, CICS region, USS 
process) needs to have access to those modules (example, STEPLIB for batch) and it’s able to 
make the connection.



33

WOLA: Re-use of CICS applications

CICS

z/OS

Assembler, 
COBOL, 
PL/1, C, 

C++, Java, 
REXX

WAS

EJBEJB

JC
A

XMWOLA

Resource 
Adapter



34

Notes

• The developers of WOLA did not wish to create a partial solution, so they made WOLA bi-
directional … both inbound to WAS z/OS and outbound from WAS z/OS.

• On the WAS side there’s a new Java Connector Architecture (JCA) resource adapter supplied 
that provides the way for EJB applications to access WOLA. That JCA adapter installs like any 
other JCA adapter and can be used to invoke programs running in CICS.



35

WOLA: WAS to CICS

BBOATRUE

BBO$
LINK server 

task

BBO#
Invocation 

task

Existing CICS 
program

COMMAREA
or

Container

CICS TS

EJB Resource 
Adapter

JCA

WAS
z/OS



36

Notes

• To enable CICS to support WOLA involves a few fairly straight forward CICS system 
programmer tasks, such as making the WOLA module library available to CICS via the 
DFHRPL DD statement, and installing the BBOACSD group into the CICS CSD.

• When you install the group, you make the WOLA programs, tasks and transactions available to 
CICS.

• WOLA uses a Task Related User Exit (TRUE) to implement its support in CICS. This is what 
provides the lower-level switching in and out of the CICS region and utilizes the Local Comm
function to communicate with the WAS server.

• A 3270 control transaction called BBOC is supplied … this allows you to manually start the 
TRUE.

• A LINK Server task -- BBO$ -- receives requests inbound to CICS and maps the request to the 
desired program. The BBO$ link server task is registers with the Daemon/Server in WAS and 
provides a pool of connections. Before any requests can be sent to CICS, the link server task 
must be started. 

• Upon arrival of a request, BBO$ will start an instance of transaction BBO#, which then invokes 
the named CICS program via LINK passing either a Commarea or a Channel.



37

WOLA: CICS to WAS

BBOATRUE

CICS program

CICS TS

EJBResource 
Adapter

z/OS

WAS

Stub



38

Notes

• From the CICS side you can call an EJB with the Invoke API call. Parameters on the call 
include a “service name”, which is the JNDI  home interface name for the EJB. 

• The WOLA invocation stub is link-edited into your CICS application.  
• At runtime, the stub will utilize the TRUE to invoke the business method on the EJB.
• The enterprise bean that you want to invoke from CICS must include a method called 

execute that accepts a byte array as input and returns a byte array as output. This is the 
method that will receive control when an application in CICS uses one of the adapter API 
calls such as Invoke or Send Request.



39

WOLA: features and benefits

• Efficient – cross-memory communications from WAS to the external 
address space, or from the external address space into WAS

• Bi-directional capability – you can leverage WAS EJB assets as local 
services from external address spaces such as CICS or batch 
programs.

• Security propagation – When operating from WAS you can flow the 
user ID, the servant ID, or the EJB role ID into the external address 
space; or from the external address space you can flow the client ID 
or, in the case of CICS, the CICS region ID or the CICS task userid.

• Transaction propagation – When operating from CICS into WAS, WAS 
can participate in a CICS unit of work for two-phase commit 
processing; from WAS you can flow last participant into CICS.



40

Notes

• WOLA is bi-directional.  CICS TG only supports Java applications invoking CICS applications.  
• WOLA requires WAS and CICS to execute on the same LPAR, while CICS TG provides facility 

for Java applications running on other LPARs or even other operating systems to invoke CICS 
applications.

• The Java Connector Architecture adapter provided with CICS TG supports XAResource (two-
phase commit) interoperability between the Java and CICS applications.

• The WOLA connector inbound to WAS provides full two-phase commit when invoked from 
CICS applications.  The WOLA API is able to propagate a CICS transaction into WAS utilizing 
RRS for syncpoint coordination.

• The Java Connector Architecture interface provided with CICS TG supports an unlimited 
number of containers and user-defined channel names when invoking a CICS application.  The 
WOLA interface restricts container usage to a single container within a named channel.



41

Functional Comparison: 
CICS TG and WOLA

• Java program invoking CICS application

• CICS program invoking Java application

• 2pc WAS invoking CICS

• 2pc CICS invoking WAS

• Use of channels and containers

WOLA CICS 
TG



42

Learn more about WOLA

• Thursday 8am – WAS z/OS WOLA Application Designs
• White paper - A Brief Introduction to WebSphere for z/OS Optimized 

Local Adapters
• ftp://ftp.software.ibm.com/itsolutions/SOA/WP101490BriefIntroductionOpti

mizedAdapterWhitePaper.pdf

• Redpaper REDP-4550 - WebSphere on z/OS - Optimized Local 
Adapters
• http://www.redbooks.ibm.com/redpapers/pdfs/redp4550.pdf

• WOLA TechDoc Page
• ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490

• Information Center - WAS v7 for z/OS
• http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp



43

Learn more about Web services

• Redbooks
• Application Development for CICS Web Services, SG24-

7126-01
• Implementing CICS Web Services, SG24-7657-00
• Securing CICS Web Services, SG24-7658-00
• Considerations for CICS Web Services Performance, SG24-

7687-00
• Integrating Back-end Systems with WebSphere Application 

Server on z/OS through Web Services, SG24-7548-00
• CICS Web Services Workload Management and Availability, 

SG24-7144-01



44

Learn more about CICS TG

• Redbooks
• Developing Connector Applications for CICS, SG24-7714-00
• Exploring Systems Monitoring for CICS Transaction Gateway V7.1 

for z/OS, SG24-7562-00
• J2C Security on z/OS, REDP-4202-00

• Information Center – CICS TG v8 for z/OS
• http://publib.boulder.ibm.com/infocenter/cicstgzo/v8r0/index.jsp

• White Papers
• Exploiting the J2EE Connector Architecture - Integrating CICS and 

WebSphere Application Server using XA global Transactions
• http://www.ibm.com/developerworks/websphere/techjournal/0607_wakelin/0607_

wakelin.html

• Integrating WebSphere Application Server and CICS using CICS 
Transaction Gateway

• ftp://ftp.software.ibm.com/software/htp/cics/pdf/WSW14013-USEN-00.pdf



45

Summary

• More than one option for integrating Java and CICS 
applications
• Web services
• CICS TG
• WebSphere Optimized Local Adapters

• CICS TG and WOLA offer highest throughput when using 
WAS on z/OS
• WOLA is not designed to replace CTG, but to complement it.


