TCP/IP Directions for CICS Interconnectivity

Ian J Mitchell, IBM Distinguished Engineer
ianj_mitchell@uk.ibm.com

5th August 2010
Objectives

As part of the multi-release IP interconnectivity (IPIC) initiative, CICS TS V4.1 now provides the facility to use TCP/IP instead of SNA for key base intercommunication functions, including 3270 based transaction routing, START and CANCEL commands. This is in addition to Distributed Program Link (DPL) introduced in CICS TS V3.2 that also provides for client requests via the CICS Transaction Gateway to invoke CICS programs using the Channels and Containers programming model and the ECI interface. This session will provide in-depth guidance on how to configure both your CICS and CICS Transaction Gateway systems to fully exploit the new IP interconnectivity (IPIC) support, and provides details on how the qualities of security, transactionality and connection management are best managed along with insight into future CICS connectivity strategy

• Agenda

1. Overview of IPIC
2. Release roadmap
3. CICS configuration
4. Security options
5. Problem determination
6. Performance
7. CTG exploitation
8. Migration

Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.
What is IPIC?

- **IPIC – IP InterCommunications Protocol**
 - Initiative to provide CICS communications support over TCP/IP as an alternative to that provided over ISC and MRO

- Customers require a TCP/IP alternative to SNA for CICS communications
 - Network convergence and simplification
 - SNA skills shortage
 - Cost of infrastructure
 - Take advantage of TCP/IP features on z/OS

- Multi-version delivery
 - No plan to remove existing SNA support
 - Aim is for migration of infrastructure without modification of CICS applications
 - Provide CICS with IP choice for most of the CICS coms-related programming model

- White paper 'CICS delivers IP interconnectivity' available at:
Advantages of using TCP/IP

• Performance:
 • Exploitation of high bandwidth OSA connectivity (QDIO)
 • Lower total CPU usage

• Security
 • Standards based security (SSL and TLS)
 • System z hardware crypto support
 • Ongoing support of new security protocols

• Costs
 • Reduction in SNA skills required
 • Reduction in network hardware required
 • Improved problem determination facilities
IPIC functions and releases

<table>
<thead>
<tr>
<th>Function</th>
<th>CICS TS 3.2</th>
<th>CICS TS 4.1</th>
<th>TXSeries 7.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECI requests</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (no 2pc)</td>
</tr>
<tr>
<td>3270 Txn routing</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>STARTs</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DPL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (no 2pc)</td>
</tr>
<tr>
<td>Function Shipping</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CPSM SYSLINKs</td>
<td>No</td>
<td>Yes</td>
<td>n/a</td>
</tr>
</tbody>
</table>

- New in CICS TS V4.1
 - Asynchronous processing (STARTs) restricted to function shipping of START, START CHANNEL, and CANCEL commands
 - Supported with or without terminal
 - Transaction routing for 3270 terminals only
 - Traditional routing only – no enhanced routing ROUTABLE(YES)
 - No LU0 or LU6.2 session routing
 - TORs must be uniquely identified (no duplicate APPLIDs)
 - CICS TS V4.1 also provides:
 - CPSM definitions (SYSLINKs), IPv6 and DNS/hostname processing, Improved performance, Distributed Identities (requires z/OS 1.11)
Existing connectivity (MRO / VTAM / ISC)

1. MRO XM
2. MRO/XCF
3. VTAM/XCF
4. VTAM/OSA
IP network options

1. Fast local sockets
2. Hipersockets (same sysplex)
3. OSA (same sysplex)
4. OSA – Gigabit Ethernet
CICS SNA resource definitions

- SNA resource definitions

- IP interconnectivity resource definitions
IPIC resources example

CICSA

- IPCONN(CICB)
 - APPLID(CICS)
 - NETWORKID(NET1)
 - HOST(hostb.com)
 - PORT(b)
 - TCPIPSERVICE(TSA)
 - SENDCOUNT(x)
 - RECEIVECOUNT(y)

TCPIPSERVICE(TSA)

- PORT(a)
- PROTOCOL(IPIC)

CICSB

- TCPIPSERVICE(TSB)
 - PORT(b)
 - PROTOCOL(IPIC)

IPCONN(CICA)

- APPLID(CICSA)
- NETWORKID(NET1)
- HOST(hosta.com)
- PORT(a)
- TCPIPSERVICE(TSB)
- SENDCOUNT(y)
- RECEIVECOUNT(x)

PORT

a

PORT

b
IPCONNs

- Autoinstall supported via URM
 - Default is enabled

- Duplicate IPCONN names with SNA/MRO connections allowed
 - Provides for migration without changing CICS application SYSID parameters

- CICS to CICS requires two-way IPCONNS
 - One socket for each way
 - One IPCONN in each CICS region

- CICS TG to CICS uses a one-way IPCCONN
IPCONN AUTOINSTALL

• Enabling AUTOINSTALL for IPCCONN
 – TCPIPSERVICE must be defined with PROTOCOL (IPIC) and URM (DFHISAIP | program_name)
 • To disable autoinstall set URM=NO
 • Default is autoinstall is enabled

– Invoked at INSTALL
 • Specifies name of installed IPCCONN to be used as a template
 • May override APPLID, HOST and PORT

– Invoked at DELETE
 • No action necessary

– Assembler,C,COBOL,PL/I samples supplied in SDFHSAMP
 – DFHISAIP URM does not use a template
 – Refer to “DFHISCIP” in CTG infocentre for information on how to use an IPCCONN template to set autoinstall USERAUTH security
DPL IPIC flows

ISCB
IPCONN
IPClient
send ISSB

CICSA

ISCB
IPCONN
IPServer
receive ISSB

CICSB

WB

C SC

C S S

C S R

USER
T1

USER

C S M I
IPIC transactions

- Service transactions
 - CSMI - EBCDIC mirror
 - CPMI – ASCII mirror
 - CRTE – Routing transaction

- CISB, CISC, CISD, CIST, CISS – Session management
- CISE - Error program
- CISR – IPIC request receiver
- CISX – XA recovery
- CISU – Recovery
- CISQ - Local queue processing
- CISM - Remote scheduler
Configuration
Enable TCP/IP

- TCP/IP
 - Allow stack access to CICS regions userid
 - EZB.STACKACCESS.sysname.tcpname

- Reserve listening ports
 - PORT 6002 TCP CICS1 SAF Keyword

- RACF protect ports (if required)
 - EZB.PORTACCESS.sysname.stackname.Keyword

- SIT parms:
 - MAXSOCKETS
 - SIT parameter controlling max sockets
 - Should be <= MAXFILEPROC in SYS1.PARMLIB

- TCPIP=YES
 - Enables Web domain
Define TCPIPService

- **URM**
 - DFHISAIP (autoinstall) or NO to disable

- **Portnumber**
 - Local listening port

- **Protocol**
 - IPIC

- **TRANSACTION**
 - CISS

- **BACKLOG**
 - Set to max clients

- **HOSTNAME** *
 - ANY (binds to all stack IP addresses)

- **IPAddress**
 - Restricts bind to a specific IP address

- **Socketclose**
 - NO

- **SSL**
 - Enables SSL

* New function in CICS TS V4.1:
 Hostname support, IPv6 support, and DNS lists
Define IPCONN

- **APPLID/NETWORKID**
 - Details of remote CICS or CTG

- **HOST**
 - TCP/IP hostname of remote system

- **PORT**
 - Listening port of remote CICS
 - Do **not** specify port for one way IPCONNs

- **TCPIPSERVICE**
 - Local TCPIPService

- **SENDCOUNT/RECEIVECOUNT**
 - Number of Send/Receive sessions
 - Set to <= Maxtasks
Validating configuration

• CEMT
 – INQ TCPIP
 – INQ TCPIPSERVICE
 – INQ IPCONN

• CPSM WUI:
 – Global TCP/IP statistics
 – Inbound and outbound sockets

• Msg logs

• Netstat
Validating configuration

CICS logs:

DFHS00107 09/28/2009 15:36:27 IYK2Z32A TCPIPSERVICE IPIC has been opened on port 06001 at IP address ANY

...,

DFHIS2001 09/28/2009 16:33:01 IYK2Z32A Client web session 1 from applid IYK2Z32B accepted for IPCONN Z32B.
DFHIS2001 09/28/2009 16:33:01 IYK2Z32A Client web session 2 from applid IYK2Z32B accepted for IPCONN Z32B.
DFHIS2000 09/28/2009 16:33:01 IYK2Z32A Server web session 1 with applid IYK2Z32B on host localhost(127.0.0.1), port 06002 acquired for IPCONN Z32B.

DFHIS2000 09/28/2009 16:33:01 IYK2Z32A Server web session 2 with applid IYK2Z32B on host localhost(127.0.0.1), port 06002 acquired for IPCONN Z32B.
Validating IPCONNs - Netstat

NETSTAT command can be used to

1. Query servers listening on a specific port - NETSTAT ALLCON (PORT nnnn)

2. Query servers by job name - NETSTAT ALLCON (CLIENT jobname)

3. Query servers by IP address - NETSTAT ALLCON (IPADDR ipaddress)

4. Query servers by IP address - NETSTAT ALLCON (HOSTNAME hostname)

Netstat output:

```
NETSTAT ALLCON (PORT 6002)
MVS TCP/IP NETSTAT CS V1R9        TCPIP Name: TCPIP           14:54:10
User Id  Conn     Local Socket           Foreign Socket         State
-------  ----     ------------           --------------         -----  
CICSA    007C0DA6 127.0.0.1..44155       127.0.0.1..6002        Establsh
CICSA    007C0DA2 127.0.0.1..44154       127.0.0.1..6002        Establish
CICSB    007C0DA7 127.0.0.1..6002        127.0.0.1..44155        Establish
CICSB    007C0DA3 127.0.0.1..6002        0.0.0.0..0             Listen
```

Note:
- CTG one-way IPCONNs can only be acquired when first used by CTG
- One-way IPCONNs can not be acquired for SPI/CEMT action
Socket usage

• CICS TS 4.1 to 4.1
 – 2 sockets for send, 2 for receive
 – Total 4 sockets per region

• CICS TS 3.2 to 4.1 or 3.2
 – 1 sockets for send, 1 for receive
 – Total 2 sockets per region

• CTG to CICS TS
 – 1 sockets for send
 – Total 1 sockets per region

• Query current socket usage via
 • CEMT I TCP
 • CEMT I TCPIPSERVICE
 • CEMT I IPCCONN
 • TCP/IP statistics (wui)
 • D OMVS,L,PID=<pid>
 • Where pid is pid of SO TCB (use WUI)
IPIC Basic Checklist

1. Check CICS TCPIPS is Open
 - CEMT I TCPIPS

2. Check there is a listening socket
 - NETSTAT ALLCON (CLIENT jobname)

3. Check IP route
 - Ping <hostname>

4. Acquire connection and check for CAPEX or autoinstall errors
 - CICS: CSMT
 - CTG: STDOUT/STDERR
Using both IPIC and SNA?

• Will need an IPCCONN and CONNECTION definition for both systems

• DPL will search for an IPCCONN, then a CONNECTION

• IPCCONN and CONNECTION with same name must have same APPLID, and vice versa

• If IPCCONN is out of service, request will fail
User Exits

- **XISQUE**
 - IPIC equivalent of XZIQUE to control allocate queuing
 - Used to control the number of queued requests for sessions on IPIC connections

- **XRSINDI**
 - Invoked for install and discard of IPCONNs
 - UEIDIPCO resource type

- **XISQLCL**
 - Queuing of START NOCHECK command
 - New exit in 4.1
Security
Security

- Options to control connection access
 - TCPIPSERVICE
 - Bind to specific IP address (not ANY)

- APPLIDs
 - Disable IPCONN autoinstall
 - Define specific IPCONNs with APPLID and IP address of client system

- SAF controls (for same sysplex)
 - Use STACKCCESS and PORT statement to control access to stack
 - Use SERVAUTH and NET ACCESS zones to control which IP addresses can connect

- SSL
 - Use SSL client authentication to control which IP clients can connect to the CICS system
USERAUTH on IPCONNs

- Options to control link security
 - LINK SECURITY
 - LINKAUTH parameter names the user representing the access – it can be:
 - SECUSER
 - CERTUSER
 - FLOWED USER
 - USERAUTH
 - Local – Tasks run under default user ID
 - Identify – User ID is pre-authenticated – “Asserted Identity”
 - Verify – User ID and password required and authenticated
SSL Support

• Digital certificate-based authentication

• Asserts trust
 – “client” trusts “server”.
 – “server” trusts “client” (optional – client authentication)

• Encryption of the connection using strongest common cipher

• CICS allows cipher selection
 – in IPCCONN (as “client”)
 – in TCPIPServ (as “server”)

• Linkauth option to map client certificate to link user
Asserted Identity support

• Use of IPCCONN USERAUTH (IDENTIFY) i.e. flowing of userid without a password now requires
 – Either SSL client authentication
 TCPIPSERVICE SSL (CLIENTAUTH)
 – Or IPIC partner executes via trusted IP route

• Trusted IP routes:
 – Same sysplex or TCP/IP subplex

• Affects CICS to CICS and CICS TG to CICS requests
Asserted Identity - Trusted IP routes

- **Trusted routes**
 - CTC
 - HiperSockets
 - MPCPTP (XCF and IUTSAMEH)
 - Loopback (127.0.0.1)
 - Same sysplex

- **Untrusted Routes**
 - Partner is outside sysplex (1)
 - Target address is a DVIPA
 - Different TCP/IP subplex

[Diagram showing network connections between CICS and VTAM nodes, with labels indicating different scenarios for trusted identity.]
SO_CLUSTERCONNTYPE

- **Example** - Remote socket from Windows CTG (route 1)
 - Untrusted route

- **Netstat**
 - `Netstat -> TcpClusterConnFlag=x'81' (10000001)`

- **CICS:**
 - `CICS: -> INQUIRE IPCONN CLIENTLOC('...0001')`

<table>
<thead>
<tr>
<th>Bit pattern</th>
<th>Netstat</th>
<th>Description</th>
<th>SO_CLUSTERCONNTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>81</td>
<td>Remote socket</td>
<td>SO_CLUSTERCONNTYPE_NONE</td>
</tr>
<tr>
<td>0010</td>
<td>82</td>
<td>Different LPAR via OSA</td>
<td>SO_CLUSTERCONNTYPESAME_CLUSTER</td>
</tr>
</tbody>
</table>
| 0101 | 8A | Hipersocket | SO_CLUSTERCONNTYPE_INTERNAL
| | | | SO_CLUSTERCONNTYPESAME_CLUSTER |
| 1110 | 8E | Same LPAR
| | | Same TCP/IP stack
| | | Localhost | SO_CLUSTERCONNTYPESAME_IMAGE
| | | | SO_CLUSTERCONNTYPEINTERNAL
| | | | SO_CLUSTERCONNTYPESAME_CLUSTER |
RACF protection of TCP/IP networks

- SAF/RACF protects TCP/IP workloads just as it applies to all other types of workload
- SERVAUTH resource class used to define and protect TCP/IP resources
- General SERVAUTH profile format:
 - EZB.resource_category.system_name.jobname.resource_name
 - EZB designates that this is a TCP/IP profile
 - resource_category is capability area to be controlled e.g. TN3270, Stack Access, etc.
 - system_name is the name of the system - can be wildcarded (*)
 - jobname is the jobname associated with the resource access request - can be wildcarded (*)
 - optional resource_name - one or more qualifiers to indicate name of resource to be protected – can be wildcarded

- To protect one of the supported TCP/IP resources, you define a SERVAUTH profile with universal access(UACC) NONE and you then permit users to have READ access to the resources

- If the same sysplex but not using SSL client authentication recommendation is to use SERVAUTH class to authorize requests
Problem Determination
Monitoring options

• Debugging
 • Netstat and APPLDATA
 • CEDF

• Monitoring options:
 • Association data
 • APPLIDs (and CICS TG)
 • CICS Monitoring
CEDF

• CEDF
 • Can be used with DPLs, function shipped STARTs and ECI requests
 • CEDX <transaction>
 • Not supported with IPIC transaction routing
 • Abend AZTE
 • Not supported on connections (CEDF <sysid>)
APPLDATA

- **USS**: `netstat -a -G *IYKZPM1*IPIC`
- **MVS**: `NETSTAT ALLCON (APPLD *IYKZPM1*IPIC`

Simple correlation mechanism for use with a socket and the application using the socket (CICS)
INQUIRE ASSOCIATION

CICS INQUIRE ASSOCIATION
• Retrieves information about how a task was started
• Built during task attach

CICS INQUIRE ASSOCIATION LIST
• A list of tasks with association data

```
>>-INQUIRE ASSOCIATION(data-value)---+------------------+-><
  +-APPLDATA(data-area)-----+
  +-APPLID(data-area)-------+
  +-CLIENTIPADDR(data-area)-+
  +-CLIENTPORT(data-area)--+
  +-FACILNAME(data-area)--+
  +-FACILTYPE(cvda)--------+
  +-INITUSERID(data-area)-+
  +-IPCONN(data-area)-------+
  +-IPFAMILY(cvda)---------+
  +-LUNAME(data-area)------+
  +-MVSIMAGE(data-area)-----+
  +-NETID(data-area)--------+
  +-ODAPPLID(data-area)-----+
  +-ODCLNTIPADDR(data-area)++
  +-ODCLNTPORT(data-area)---+
  +-ODFACILNAME(data-area)--+
  +-ODFACILTYPE(cvda)------+
  +-ODIPFAMILY(cvda)--------+
  +-ODLUNAME(data-area)-----+
  +-ODNETID(data-area)------+
  +-ODNETWORKID(data-area)++
  +-ODSTARTTIME(data-area)++
  +-OTASKID(data-area)------+
  +-ODTRANSID(data-area)---+
  +-ODUSERID(data-area)-----+
  +-PROGRAM(data-area)------+
  +-SERVERIPADDR(data-area)++
  +-SERVERPORT(data-area)---+
  +-STARTTIME(data-area)----+
  +-TCPIPJOB(data-area)-----+
  +-TCPIPSERVICE(data-area)++
  +-TCPIPZONE(data-area)----+
  +-TRNGRPID(data-area)-----+
  +-TRANSACTION(data-area)++
  +-USERCORRDATA(data-area)+
  ' | USERID(data-area)------'
```
CPSM WUI - Task Association Data

- Activity – Tasks -> Task association data

Active tasks

<table>
<thead>
<tr>
<th>CICS system name</th>
<th>IYKZZ32A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task ID</td>
<td>0000122</td>
</tr>
<tr>
<td>Transaction</td>
<td>CSMI</td>
</tr>
<tr>
<td>User ID</td>
<td>CICSUSER</td>
</tr>
</tbody>
</table>

Name of system that originated the request

Transaction that initiated work at Point of Origin

IP address of Point of Origin

(Java client when using CTG)
CPSM WUI - IPFacilities

- Activity – Active Tasks -> TCP/IP usage data -> Number of IP facilities associated with task

IP facilities

<table>
<thead>
<tr>
<th>Record</th>
<th>CICS system name</th>
<th>IP facility token</th>
<th>Associated task id</th>
<th>IP connection id</th>
<th>IP facility type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IYK2Z32A</td>
<td>2BA32A60</td>
<td>0000122</td>
<td>CTGIPW4</td>
<td>PRINCIPAL</td>
</tr>
</tbody>
</table>

IPCONN used to initiate work (contains link to TCPIPService)

Principal or Alternate IP facility
CICS TG Enhancements
CTG topologies

1. Local mode (2-tier)

 Resource Adapter | IPIC driver | Client daemon

 SNA TCP/IP

 TCP/IP or SSL (XA)

 CICS

2. Remote mode (3-tier)

 Resource Adapter | TCP

 TCP/IP or SSL

 Gateway daemon | JNI

 IPIC driver

 EXCI (XA)

 CICS

 IPIC (XA)
CTG IPIC Support

- Support for channels and containers
- Java/JCA - (CTG V7.1)
- EClv2 Channels/Containers - (CTG V8)
- XA transaction (2pc) support
- SSL connections direct to CICS TS
- New monitoring options: Origin Data
- Fully zAAP enabled code path
- Asserted identity options
- Dual sockets support (CTG V8)
Define IPCONN for CTG

- **Applid**: Applid of CTG (optional)
- **NetworkID**: APPLIDQUALIFIER of CTG (optional)
- **Host**: TCP/IP hostname for remote CTG (optional) use localhost if on same TCP/IP stack
- **Port**: NONE (Do not specify port for CTG one way IPCONN)
- **TcpipService**: CICS TCPIPService listening for requests
- **Receivecount**: Number of receive sessions to service parallel requests set to <= MAXTASKS
- **SendCount**: N/A - Set to 000 for one-way IPCONNs
- **QueueLimit**: Number of requests to queue waiting for a receive session
- **Autoconnect**: No

![CICS IPCCONN Configuration](image)
IPIC definitions – Gateway daemon

- Ctg.ini file:

 SECTION PRODUCT
 APPLID=CTGMVS
 APPLIDQUALIFIER=GBIBMIYA (mandatory to match hard coded IPCONNs)
 DEFAULTSERVER=IPICZ32
 ENDSECTION

 SECTION IPICSERVER=IPICZ32
 DESCRIPTION=CICS TS V3.2 IPIC server
 TCPKEEPALIVE=Y
 SRVIDLETIMEOUT=60
 SENDSESSIONS=100
 CONNECTTIMEOUT=10
 HOSTNAME=localhost
 PORT=27609
 CICSAPPLID=IYKZ3PM1
 CICSAPPLIDQUALIFIER=GBIBMIYA
 ENDSECTION
IPIC – local mode

- Servers are not defined in ctg.ini file or returned by ListSystems
- URL format is used
- CICS applid is optional, but will be used to verify connection

1. Protocol://hostname:port
2. Protocol://hostname:port#CICSAPPLID
3. Protocol://hostname:port#CICSAPPLIDQUALIFIER.CICSAPPLID

Example

```java
```
CICS and CTG logs

- CICS displays

DFHS00107 09/28/2009 15:36:27 IYK2Z32A TCPIPSERVICE IPIC has been opened on port 06001 at IP address ANY

………

DFHIS2001 09/28/2009 16:30:28 IYK2Z32A Client web session 1 from applid CTGPW4 accepted for IPCONN CTGPW4

- CICS TG displays

09/28/09 16:30:28:261 [0] CTG8429I Established new IPIC connection to CICS server IPICZ32A with: negotiated session limit=100, CICSAPPLID=IYK2Z32A CICSAPPLIDQUALIFIER=GBIBMIYA, HOSTNAME=localhost, PORT=6001
Migration
Migration utility

- Migration utility for converting APPC and MRO connections to IPIC
 - DFH0IPCC sample program for use with DFHCS DUP system definition utility
 - Provide list of APPLIDs with corresponding hostnames and port numbers
 - Creates IPCONNs and TCPIPServices for connections

<table>
<thead>
<tr>
<th>APPLID</th>
<th>NET-ID.</th>
<th>PORT.</th>
<th>HOST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.DEFAULT</td>
<td>LOCALNET</td>
<td></td>
<td>TCPIPSERVICE=TCPSERV1</td>
</tr>
<tr>
<td>APPL1A</td>
<td></td>
<td>9876</td>
<td>my.local.hostname</td>
</tr>
<tr>
<td>OTHERCIC</td>
<td>OTHERNET</td>
<td>12345</td>
<td>this.host.has.a.very.long.name.which.is.going.to.requir*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e.a.continuation.record</td>
</tr>
</tbody>
</table>

* Comments such as this are entirely free-form other than the * in column 1
| CICSXYZ | | 9875 | 10.2.156.221 |
SNA/IPIC Command equivalents

<table>
<thead>
<tr>
<th>SNA</th>
<th>IPIC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONN install</td>
<td>IPCCONN install</td>
<td>Acquired if autoconnect(yes)</td>
</tr>
<tr>
<td>warm start</td>
<td>warm start</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET VTAM open</td>
<td>SET TCPIP open</td>
<td>All conns with autoconnect(yes) acquired</td>
</tr>
<tr>
<td>SET CONN acq</td>
<td>SET TCPIPS open</td>
<td>Refing IPCONNs with autoconnect(yes) acquired</td>
</tr>
<tr>
<td></td>
<td>SET IPCONN acq</td>
<td></td>
</tr>
<tr>
<td>SET VTAM closed</td>
<td>SET TCPIPS (*) closed</td>
<td>new allocates rejected, queued allocates and</td>
</tr>
<tr>
<td>SET CONN rel</td>
<td>SET TCPIPS closed</td>
<td>work in progress allowed</td>
</tr>
<tr>
<td></td>
<td>SET IPCONN rel</td>
<td></td>
</tr>
<tr>
<td>SET VTAM immclose</td>
<td>SET TCP closed</td>
<td>new allocates rejected, queued allocates</td>
</tr>
<tr>
<td>SET VTAM forceclose</td>
<td>SET TCP immclosed</td>
<td>cancelled, work in progress abended</td>
</tr>
<tr>
<td></td>
<td>SET TCPIPS immclosed</td>
<td></td>
</tr>
<tr>
<td>SET MODENAME CLOSED</td>
<td>No equivalent</td>
<td>no concept of modegroup or cnos</td>
</tr>
<tr>
<td>SET MODENAME AVAIL(0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CICS TS V4.1 – IP Performance

• CICS:
 – Improved pathlength for IPIC syncpoint flows
 – Multiple sockets
 • Improves scalability and response times under high load
 • Requires CTG V8.0 if using ECI over IPIC
 – Dynamic right sizing
 • Dynamic setting of 64K receive buffers to enable TCP/IP window scaling.
 • Enables the TCP/IP stack to dynamically optimise the window size
 • Prevents low data transmissions due to bursts of activity

• z/OS TCP/IP networking improvements
 – 10-Gigabit ethernet
 • OSA-Express and QDIO
 – OSA-Express3
 • Optimized latency mode (OLM)
 – Significant response time improvements for transactional workloads
 – V1.11 APR enablement PK90205 and OA29634
 – zIIP-Assisted HiperSockets
 • z/OS V1.10
Benchmarking network options

1. Fast local sockets
2. Hipersockets (same sysplex)
3. OSA (same sysplex)
4. OSA – Gigabit Ethernet
IPIC Performance vs SNA

- IPIC CICS pathlength comparable or less than LU6.2 pathlength
- As payload increases IPIC pathlength scales better than LU6.2
- CICS TS 4.1 DPL pathlength reduced by ~ 14% vs. CICS TS 3.2

CICS TS 4.1 DPL CPU usage, OSA via Gigabit Ethernet
32KB payload

- CICS to CICS IPIC response time better than LU6.2
- IPIC max throughput significantly better than LU6.2
- IPIC data throughput close to 75% of Gigabit ethernet
- Hipersockets gives very low latency for connections between LPARs
- IP via OSA uses less CPU than via Hipersockets
IP Routes vs. MRO

CICS TS 3.2 DPL – Total CPU Usage
IPIC vs. MRO Transports, 32KB data/link

- Response time of IPIC/Hipersockets is equal or better than MRO/XCF
- IPIC via OSA uses less CPU than via Hipersockets
- Fast local sockets is most efficient and fastest IPIC route, but MRO has lowest CPU cost
- IP over OSA provides lower CPU cost than Hipersockets route for inter-LPAR comms
IPIC Performance
- CICS TG Multiplatform and ECI/IP

CTG V7.1 AIX
Max Throughput per transport

CICS connector performance
100 byte and 32KB

Scenario
CTGWin32 IPIC (100byte)
CTGWin32 ECI/IP (300byte)
CTGWin32 IPIC (32KB)
CTGWin32 ECI/IP (32KB)
IPIC Performance - CICS TG z/OS and EXCI

EXCI vs IPIC (Throughput)

CICS CPU per transaction
IPIC vs EXCI ECI requests

EXCI vs IPIC (Throughput)
Analysing IP waits

• TCP/IP I/O Waits
 • CICS Monitoring data
 • SUSPTIME
 • SOIOWTT
 • If SOIOWTT wait time is high% of task wait time then delays in writing to socket

• TCP/IP
 • Netstat /A
 • Round-trip information: Smooth trip time:ms
 • Time for data to be acknowledged
 • High round trip time (200ms+) suggest delays in network or tcp/ip acknowledgements

• Send/receive buffers
 • Use 64K send/recv buffers if using socket connections into z/OS
 • TCPSENDBFRSIZE 65536
 • TCPRCVBFRSIZE 65536
 • Ensure APAR PM19483 is applied if using 64K send/recv buffers with local sockets with V1R11 or earlier
z/OS V1R11 - Dynamic TCP NODELAY tuning

- **Nagle** (on send side)
 - Data from a small send() cannot be put on the wire if there is outstanding unacknowledged data
 - Applications can disable Nagle by setting the TCP_NODLEAY sockets options
 - CICS TS 3.2 disables Nagle for key protocols

- **Delayed ACK** (on receive side)
 - TCP generally ACKs every 2nd segment
 - TCP generally waits 200 msec before sending a stand-alone ACK if no 2nd segment arrives

New transactional applications often encounter severe performance problems due to this behavior
- Most application programmers don’t know about Nagle
- Very often seen with CICS Sockets applications

- z/OS V1R11 Communications Server transparently relaxes the requirements of Nagle for the initial exchanges of data between two applications

✅ Improved performance for older CICS release that do not disable Nagle
Summary

• IP Advantages -
 • Increased QoS over CICS APPC connections
 • Reduced cost of IP networking
 • Wider range of security options
 • Ability to exploit networking IP optimizations

• Multi-release delivery
 • Allows staged migration away from SNA networks
 • Without impacting business applications

• For more details on CICS IP interconnectivity strategy refer to Whitepaper: “CICS delivers IP interconnectivity”
 • http://www.ibm.com/software/htp/cics/tserver/v32/library/#wpapers
Requirements

- CICS TS V4.1
 - PK91639 for XA

- CICS TS V3.2
 - APARs:
 - PK49017, PK49015, PK49116, PK49490, PK49021, PK51587, PK53783
 - PK55716, PK57726, PK65134, PK91639 Required for XA
 - PK55494, PK55495 for asserted identity control

- CTG V7.1.0.2 (or later) for DPL over IPIC
Slide Title (Type Size=28) (no more than two lines)

• First Major Topic (Type Size=24)
 • Subtopic One (Type Size=22)
 • Subtopic Two (Type Size=22)
 • Sub-subtopic (Type Size=20)
• Second Major Topic (Type Size=24)
• Third Major Topic (Type Size=24)
• Fourth Major Topic (Type Size=24)
Two-Column Slide (Type Size=28)

• Topic A (Type Size=24)
 • Subtopic 1 (Type Size=22)
 • Subtopic 2 (Type Size=22)
 • Subtopic 3 (Type Size=22)
 • Subtopic 4 (Type Size=22)
• Topic B (Type Size=24)

• Topic C (Type Size=24)
 • Subtopic 1 (Type Size=22)
 • Subtopic 2 (Type Size=22)
 • Subtopic 3 (Type Size=22)
 • Sub-subtopic 1 (Type Size=20)
 • Sub-subtopic 2 (Type Size=20)
• Topic D (Type Size=20)
Slide with Table
Slide with Text & Graphic