
INNOVATION:
THE INDIGO CHILD OF 

SYSPLEX DISTRIBUTION  
SHARING OUR EVOLUTION

Sigfrido Perdomo
sperdomo@dtcc.com
The Depository Trust & Clearing Corporation

Tuesday, Aug 3, 2010
Session 6913



2

THE INDIGO CHILD OF 

SYSPLEX DISTRIBUTION  

SHARING OUR EVOLUTION

“STACK‟S IDENTITY – STATIC TO DYNAMIC”

SYSPLEX Distribution

For Applications with Data Sharing Capacities  &

Application IP Centricity

Has the Potential to 

Double One‟s: 

Availability

Reliability

Scalability

Resource Balance

Optimizing Performance

However

Not so easy for Legacy Applications that 

Target the Stack‟s Identity  

Over 85% of our clients do so

Thus the birth of the Indigo Child Of SYSYPLEX DISTRIBUTION:

STATIC TO DYNAMIC 



3

THE INDIGO CHILD



4

PRELUDE: TCPIP / SYSPLEX

Topics:   Some of the topics we‟ll discuss are –

PRELUDE  To The “Indigo Child”:

TCPIP / SYSPLEX Distribution 

• Dynamic VIPAs & Their Interrelations 

• VIPARANGE – (AKA VIPA Follow) & Applications  

• Special considerations with VIPARANGE & BIND(s)

• IP Application Addresses & SUBNETS / DVIPA models In OMPROUTE

• Connectivity Tester - New Developed Code   (CONNTEST – VS – Telnet)

• SYSPLEX Distributor & Applications   

• The Ephemeral Structure - EZBEPORT

• BASEWLM / SERVERWLM & Relevant  Profile statements

• VIPAROUTE & XCF Relief

• SYSPLEX Distribution Confirmation

• Confirmation & Simulation methods

• Some DVIPA commands

• SYSPLEX Distribution Broken Symmetry – F/W‟s And Statefulness

• The Cause

• The Resolution – Policy Based Routing.

• IPL Relief Order  

• Deeper Levels Of Availability

• VTAM & TCPIP – ARM‟d

• OMPROUTE – ARM Wrapped



5

PRELUDE: TCPIP / SYSPLEX

Topics:   Some of the topics we‟ll discuss are -

TCPIP / Innovation: Static – To - DYNAMIC 

• Why Static – To - Dynamic 

• The Goal

• Why not NAT to a different IP address versus converting the Stack's Identity / Primary 
Interface,  from a static VIPA to A Dynamic VIPA.

PHASE ONE: Stack‟s Identity / Primary Interface Becomes a DYNAMIC VIPA    95% There

• Parameters  & Listener Applications   

• Some Hurdles To Over Come

• PINGS (ICMP) & TRACERTE (UDP)

• NSLOOKUP / DNS 

• Firewall Updates for OSA(s) Subnets

• Connectivity Tester - (Still In The Mix)

PHASE Two: Stack‟s Identity / Primary Interface becomes a Distributed Dynamic  VIPA –

Related Parameters   

• Special Case Of DB2 & MQ   

• New DB2 IP  Application Centric Infrastructure 

• Code to track Migration

• The SYSPLEX Integrity Checker - (Rolling IPL(s) and/or LPAR /  Stack failures – New Developed Code) 

• The Stack‟s Identity becomes  a Distributed Dynamic VIPA!!!!!!  100% There!!!

• Sample of Exploitation



6

TCPIP SYSPLEX Distribution–

DYNAMIC VIPA(s) & Their Interrelations

• VIPA Evolution:

• IP address availability in z/OS can be viewed as a progressive evolution. Static VIPA 
eliminated the problem of an IP address being associated with a single networking hardware 
point of failure.

• Dynamic VIPA allows us to move such IP addresses in event of an application, TCP/IP stack, or 
LPAR failure. 

• Dynamic XCF provides automatic generation of links to provide an  IP layer of connectivity
within the SYSPLEX

• The SYSPLEX Distributor can be viewed as a continued evolution of connectivity 
improvements. It is a combination of the high availability features of DVIPA and the workload 
optimization capabilities of WLM.

• Distribution is a function of a specific IP address associated with a Port that given 
applications Listen on.  

• The key is shared data.  



7

TCPIP SYSPLEX Distribution–

VIPARANGE (AKA VIPA FOLLOW) & APPLICATIONS

• VIPARANGE  - With & Without Binds:

• VIPARANGE is for a range of addresses, max of 256 or min of 1, relative to the subnet mask  association.

• Subnet Mask within the VIPA DYNAMIC Block statement has nothing to do with routing. 

• It only tells TCPIP what addresses are eligible to use for dynamically creating Device  / Link statements and 

adding the addresses  to the bottom of the stack‟s HOME list.

• The key to VIPARANGE is that it floats with a given application,  as long as said statements are on both, (or 

more), participating stacks & no manual intervention. – It‟s a cousin to ACB modeling.

• How is VIPARANGE associated with an Application:

• We BIND via the PORT statement.

• An APF authorized program issues the SIOCSVIPA ioctl() 

• A utility like MODDVIPA is executed on behalf of the address space – A pre-step in the JCL.

• BIND  - Without VIPARANGE.  This is good if  two instances of an application – different  job names, are 

listening on the same port,  on the same  stack, different IP addresses. FTP would be an example.



8

TCPIP SYSPLEX Distribution–

DYNAMIC VIPA(s) & Their interrelations

• DYNAMIC VIPA:

• Some thoughts regarding DVIPA, (VIPADEFINE / VIPABACKUP), DDVIPA, VIPARANGE / 
BIND, (AKA VIPAFOLLOW - that's a more meaningful name in my mind for VIPARANGE) and 
BIND without a VIPARANGE – and future directions. 

• If there are two application instances in a data sharing capable environment, then DDVIPA -
Distributed DVIPA. is a good option. This will provide load balancing and higher availability.  

• If there is one instance of the application, then use BIND / VIPARANGE - let the VIPA follow 
the address space. ( Either the address space BINDs or we do it for them). Why this method 
versus VIPADEFINE / VIPABACKUP? 

• Example: If we do a VIPADEFINE / VIPABACKUP - and BIND  the address space,  LPAR-
1/ LPAR-2, the only way the address space can ever come up on LPAR-2 is if the stack
failed on LPAR-1 or  OBEY(s) were issued. ( One obey to delete the VIPA on LPAR-1, 
one to bring it back to LPAR-1 from LPAR-2 – OBEY issued on LPAR-1).  

• My point is, given how workloads can move around,  we'd be out of the loop if the VIPA,  
followed the address space.



9

TCPIP SYSPLEX Distribution–

VIPARANGE (AKA VIPA FOLLOW) & APPLICATIONS

• BINDS without VIPARANGE &  Rolling IPLs Mix –

• A Story:

• In rolling IPLS, DVIPA , (define / backup),moved from LPAR-1 to LPAR-2.  

• There were two same-named applications / STC(s) each on LPAR-1 & LPAR-2.  They were listening on 

“IN_ADDR_Any – 0.0.0.0.” and same port.

• It just happened that a down stream server had an automation script that kept trying to connect to the IP 

Address that was normally advertised from LPAR-1.  It happened to connect when the DVIPA was 

temporarily on LPAR-2 during the rolling IPL. 

• The bind was successful on LPAR-2.  

• LPAR-1 came back up and took the DVIPA.  All was normal except that BIND on LPAR-2 was in an established 

state and of course the default for the DVIPA was „NON-Disruptive”.  So data was being gathered from LPAR-

2 versus LPAR-1 

• The Solution: 

• We bound the address spaces to LISTEN on the DVIPA, via the PORT statement, relative to the respective 

LPAR. 



10

TCPIP SYSPLEX Distribution–

VIPARANGE (AKA VIPA FOLLOW) & APPLICATIONS

• Special Considerations – VIPARANGE (Non-Disruptive) & BINDs –

• The Scene – LPAR-1 & LPAR-2 part of the same PLEX:

• (IF IT CAN HAPPEN, IT WILL HAPPEN!!!!)

• An MQ region is listening and bound to LPAR-1.

• A special connectivity tester – very quick test, uses a Socket BIND on LPAR-2.

• Be aware that the IP address created as result of a bind, can disappear and not be advertised from the stack 

where say an MQ region is listening on.

• This can happen if on a participant stack another BIND for the same IP address occurs.

• If that happens, the IP address is flagged with an "I" under the home list of the original stack and now the 

same IP address will be advertised from the participant stack. 

• When the application, e.g. connectivity tester, completes on the participant stack, then that IP 

address will not be advertised at all. 

• And All sessions relative to that DVIPA are Lost! ---- “I Hate When That Happens!!!” 

• The only way to get that IP address back to the original stack & advertised is  via another BIND. 

• This is the case if VIPARANGE with the default - (or stated)  of  NONDISRUPTIVE is in place.

• Solution: The way to prevent that is to code VIPARANGE DISRUPTIVE.

• Weird right?



11

TCPIP SYSPLEX Distribution–

VIPARANGE (AKA VIPA FOLLOW) & APPLICATIONS

• IP Application Addresses & Subnets / DVIPA Models / OMPROUTE

• Application centricity is enabled via VIPARANGE & SYSPLEX Distribution (More on SD later)  

• We have subsets of internal IP addresses used by applications that do not face the outside 

world

• We have subsets of external IP addresses used by applications that face the outside world.

• Our Environment  has Cross CEC / Site SYSPLEX LPARS for optimal availability & recovery.

• Our external IP addresses have a 30 bit subnet mask – a mini network per application.

• Each SITE has a unique Class C subnet to facilitate IP advertisement for site transference: 

• SITE-1: 192,168.AA.xx   - Applications normal residence

• SITE-2: 192.168.BB.yy  - Applications normal residence

• This scheme optimizes OMPROUTE & routing advertisements should single or multiple 

applications relocate from SITE-1 to SITE-2,  while others remain on SITE-1. 



12

TCPIP SYSPLEX Distribution–

VIPARANGE (AKA VIPA FOLLOW) & APPLICATIONS

• IP Application Addresses & Subnets / DVIPA Models / OMPROUTE

• We Use DVIPA Wildcard / Models in OMPROUTE – “One statement keeps the all”:

• 192.168.AA.*   subnets 255.255.255.252

• 192.168.BB.*   subnets 255.255.255.252

• Some Examples:
•

• Model to be used for all DVIPA's in 192.168.AA.0 Network

OSPF_Interface                                            

IP_Address=192.168.AA.*                              

Name=dummyAA1

Subnet_Mask=255.255.255.252

OSPF_Interface                                            

IP_Address=192.168.BB.*                              

Name=dummyBB1

Subnet_Mask=255.255.255.252



13

TCPIP SYSPLEX Distribution–

VIPARANGE (AKA VIPA FOLLOW) & APPLICATIONS

• Connectivity Tester (CONNTEST) – VS – TELNET 

(Another interesting Hurdle toward IP Application Centricity)

• The Problem:

• TELNET was used by our NEO Group to confirm F/W & Connectivity.   

• As we continued to evolve into Application IP Centricity, - where an application listens on a 

specific IP address, the ability to inject a source IP address assigned to an application  is 

mandatory. 

• IP Application centricity stymied because TELNET has no SRCIP injection capability.

• The Resolution - CONNTEST:

• A new tool has been developed that simulates an application call when used in 

diagnostics to confirm connectivity, F/W rules, etc, from our  mainframes.

• A socket program to perform an application connection request

• Has the capability to inject a Source IP
• 3 parameters: Destination IP, Port & SRCIP (if present)

• If third parameter (SRCIP) is not passed, it then uses the Host Primary interface (GET HOST_ID) 

• Confirms the SRCIP that is passed is actually being advertised from the stack invoked.

• Can be executed from NETVIEW or TSO.  

• See APENDIX for more details



14

TCPIP SYSPLEX DISTRIBUTION –

THE  Ephemeral Structure

Our Story Continues:

If We Build It… They Will Come:

• Build The Structure – (Like For VTAM):

SETXCF START,POL,POLNM=PPLX01,TYPE=CFRM
*    Confirm The Structure – MVS: 

• D XCF,STR,STRNAME=EZBEPORT
*     Expect something like:

STRNAME: EZBEPORT                          
DUPLEXING REBUILD  

CONNECTION NAME     ID VERSION      SYSNAME     JOBNAME     ASID    STATE 
---------------- -- -------- -------- -------- -------------- ------ ----------
NETID.LPAR-1               01 000100D2      Dl001             NET               0047     ACTIVE
NETID.LPAR-2               02 000200C9      D 003             NET               004A     ACTIVE

*  Confirm The Structure – VTAM: 
• D NET,STATS,TYPE=CFS,STRNAME=EZBEPORT,LIST=ALL,SCOPE=ONLY 

*  Expect something like:
NETID.LPAR01       IS CONNECTED TO STRUCTURE EZBEPORT 

*
LIST  DVIPA                    SYSNAME      TCPNAME                # ASSIGNED PORTS
1        192.168.XX.1        TCPLPAR1      TCPPAR1                   2345 
1        192.168.XX.2         TCPLPAR2     TCPPAR2                    1839 

*  Confirm The Structure – VTAM: 
• D NET,ID=ISTTRL,E

*  Expect something like:
• TRLE = ISTT0103  STATUS = ACTIV       CONTROL = XCF 

TRLE = ISTT0102  STATUS = ACTIV       CONTROL = XCF

NOTE: z/OS 1.9 – 2 APARS: PK77995 / UK42896 & PK38073 –Ephemeral Port Leakage



15

TCPIP SYSPLEX DISTRIBUTION –
BASEWLM / SERVERWLM & Relevant Profile 

Statements

SYSPLEX DISTRIBUTION - & Some Thoughts:

• SYSPLEX Distributor's key benefit, seems to be not so much in the overhead it incurs but the 
balance of CPU achieved via the address spaces / applications it distributes workload to. 

• Higher availability functions from the client's point of view.  - One Application Face to Clients.

• We've seen CPU balance off within two CEC's - two Sites, as more applications have jumped on 
the data sharing band wagon – (more on  those applications later).

• Queuing at some of these address spaces / applications, is also less as the workload is spread.

How It Flows:

• SYSPLEX Distributor's balancing is such that the Distributing stack, from where the DDVIPA is 
being advertised, always receives inbound traffic

• If SD engages a target participant stack, then outbound traffic will flow from that stack - and one 
will see sessions established on the participant stack.

• When the Distributing stack receives an inbound packet, it datagram forwards it to the target stack.

• Cross CEC traffic will use the XCF unless VIPAROUTE is enabled to use another path. (more later)

• In a way, that kind of forwarding can be perceived as asymmetric routing – (A bit more on that 
later too) 

• VIPADEFINE / VIPABACKUP are part of the definitions required for SD.



16

TCPIP SYSPLEX DISTRIBUTION –
BASEWLM / SERVERWLM & Relevant Profile 

Statements

BASEWLM / SEVERWLM:

• BASEWLM is recommended for applications that serve as Gateways. It‟s a view from the LPAR 
Performance index

• The reason for this is that Gateways may not know the state of the applications  they service. Some 
examples of such address spaces / applications are: 

• TN3270  TELNET Server would be an example of this 

• DCAS that interfaces with Legacy CICS 

• FTP Daemon address space spawns via a FORK(0) for an FTP server the new session

• SERVERWLM represents the health of the application from WLM‟s point of view. 

• There are two key elements:

• The Application‟s importance relative to its service class

• How well the application is performing compared to the WLM goals for that application 

• Additionally, WLM provides an interface to allow the application to provide:

• Abnormal transaction completion rate

• Application health, a value in the range 0-100% (100% being optimal)



17

TCPIP SYSPLEX DISTRIBUTION –
BASEWLM / SERVERWLM & Relevant Profile 

Statements

Relevant Profile statements – (Note: full explanations not in the scope of this presentation)

See z/OS Comm server for full information – Chapter 8 

• IPCONFIG:

• SOURCEVIPA

• SYSPLEXROUTING

• DATAGRAMFWD

• DYNAMICXCF

• TCPSTACKSOURCEVIPA    192.168.XX.YY   The Stacks Identity / Primary interface.

• GLOBALCONFIG:

• SYSPLEXMONITOR

• DELAYJOIN Wait for OMPROUTE

• SRCIP:
• JOBNAME ABC1234 192.168.AA.yy  For Application Centricity 

• JOBNAME *             192.168.XX.YY  The Stacks Identity / Primary interface.

VIPADYNAMIC:
• VIPARANGE  DISRUPTIVE 255.255.255.255 

• VIPADISTRIBUTE

• VIPAROUTE  Use for XCF Packet Relief 

• VIPADEFINE /VIPABACKUP

• SYSPLEXPORTS  Used for outbound ephemeral ports – EZBEPORT  XCF structure 



18

TCPIP SYSPLEX DISTRIBUTION –

VIPAROUTE & XCF IPL Relief 

• SYSPLEX Distributor uses internal logic to optimize data forwarding when 
engaging a Target / Participant Stack:

• IUTSAMEH if two stacks under the same MVS Image
• HIPERSOCKETS when enabled intra – CEC.   

• Initially, XCF used for data forwarding when engaging a Target  Stack – Inter-CEC.

• XCF not most optimal route for SD forwarding traffic.

• More applications are joining the XCF band wagon – DB2, MQ, CICS

• A Better way was needed – VIPAROUTE is introduced –z/OS 1.7:

• Use Optimal paths with low Cost / metrics to forward DDVIPA packets:
• MPC connections
• High SPEED Gigabit Ethernet segments using OSA-Express

• How it works:

• Generic routing encapsulation (GRE) using an Advertised IP address from the target stack 
as specified in the VIPAROUTE statement – A static VIPA is recommended – we used our 
APPN/EE static VIPA.

• In our case the OSA‟s to get across CEC have the lowest cost via OMPROUTE / OSPF

•



19

TCPIP SYSPLEX DISTRIBUTION –

VIPAROUTE & XCF IPL Relief 

VIPAROUTE Examples & Confirmation :

• From the profile – It‟s a subset of the VIPADISTRIBUTE statement

• Only needs to be specified once – (Relative to  target Stack)

• The Parameters are The XCF IP address of the participant stack & an advertised address from that 
stack – Static VIPA is recommended (We use static EE VIPA) 

• Sample:

VIPADISTRIBUTE 192.168.ZZ.JJ  PORT LLLLL 

DESTIP 192.168.EE.CC 192.168.EE.DD

VIPAROUTE 192.168.YY.XX 192.168.AA.BB (Target XCF IP Address / STATC VIPA)

VIPADISTRIBUTE 192.168.ZZ.JJ PORT PPPP 

• Sample command: NETSTAT VIPADYN:

VIPAROUTE is enabled 
XCF Address     TargetIp        RtStatus

192.168.EE.EE   192.168.II.SS  Active

• NOTE: ALSO RAN  A PACKET TRACE USING MY PC IP ADDRESS CONFIRMING OSAS NOT XCF USED



20

TCPIP SYSPLEX DISTRIBUTION –

VIPAROUTE & XCF IPL Relief 

How it works - Continued:

• The dynamic XCF address is still required be configured.

• SYSPLEX Distributor continues to use a dynamic XCF address for signaling to TCP/IP stacks in 
the SYSPLEX 

• Also, there are several functions that continue to depend on dynamic XCF connectivity for intra-

SYSPLEX communications:

• XCF Structures such as:
• EZBEPORT – Ephemeral port coordination 

• EZBDVIPA – SYSPLEX Wide Security - SWSA

• Policy Agent services

• GRE De-capsulation takes place at the target / participant stack 

• GRE adds 28 bytes in its encapsulation – fragmentation considerations warranted:

• Fragmentation considerations: 

• Enable MTU Path Discovery

• Ensure Inter-CEC paths favor OSA‟s

• Gigabyte Ethernet  accommodates Jumbo packets  (8992)

• AGAIN PATH MTU Discovery is key to avoid fragmentation both towards Clients while 

maintaining  Jumbo packet capacity between Inter-CEC LPARS



21

TCPIP SYSPLEX Distribution And 

Broken Symmetry – Asymetric routing & 

F/W Statefulness  

• It’s Hard Times For Everyone:

• The SYSPLEX Distributor and  Related DDVIPA Applications worked in 

Harmony for about two years when an unexpected turn of events Hit.

• While all was well In Main Street Mainframe Boulevard, A topological Event 

further down stream caused SYSPLEX Distribution to ceased working.

• ENTERPRISE WIDE!

• How it Happened:

• One typical Monday morning, users started  to complain about slower response times, DB2 

applications were not being distributed and more. 

• We Began investigating the health of the SYSPLEX Distributor  



22

TCPIP SYSPLEX Distribution And 

Broken Symmetry – Asymetric routing & 

F/W Statefullness

• Its Hard Times For Everyone:



23

TCPIP SYSPLEX Distribution And 

Broken Symmetry – Asymetric 

Routing & F/W Statefulness

• How it Happened - Continued:

• Key Indicators from the  Distributor‟s point of view clearly indicated target stacks 

were unresponsive.  

• This was the case on all our SYSPLEX environments – Production, QA, 

Development, SYSTEMS PLEX.   

• Key indicators are :

• TSR:     Responsive rate between the distributor and the target stack
• TCSR:   Connectivity Success rate to the target stack

• CER: Connection establishment rate between sever and client

• SEF:      Server accepting new work

• Following are some command examples that led us to our shock.



24

SYSPLEX Distribution Confirmation

• Sample Commands – Health of the SYSPLEX Distributor

• Here‟s a sample of a HEALTHY Environment::

• NETSTAT VDPT:

• Dynamic   VIPA Destination Port Table:

Dest IPaddr DPort DestXCF   Addr Rdy TotalConn WLM TSR Flg

192.168.BB.11  12345   192.168.AA.YY      001   00018152 05      100 B > LPAR-1

192.168.BB.11  12345   192.168.AA.ZZ      001   00018180 02 100 B > LPAR-2

• Here‟s a sample of a UNHEALTHY Environment::

• NETSTAT VDPT:

• Dynamic   VIPA Destination Port Table:

Dest IPaddr DPort DestXCF   Addr Rdy TotalConn WLM TSR Flg

192.168.BB.11   6789   192.168.AA.YY      001   00023185 05      100 B > LPAR-1

192.168.BB.11   6789   192.168.AA.ZZ       001   00000000 02       000 B > LPAR-2

• NOTE: See Appendix for more DVIPA commands:



25

TCPIP 

The Lost of SYSPLEX Distribution 

– A Crises  

• The Cause:

• After many traces, dumps and meetings OH MY… with other infrastructure teams it turned out 
that distribution ceased due to the new MPLS core network  firewalls and a perception of 
asymmetric routing.

• There are two sets of firewalls, per site.  The two are in VRRP mode where one is active 
and the other in standby.  This design‟s objective is to balance firewall traffic.

• In the previous infrastructure,  there were also four firewalls,  one active and 3 as standby, 
thus in and out packets traversed the same Firewall. 

• Broken symmetry / Asymmetric routing is perceived due to the SYN packet arrives at the 
Distributor but the SYN ACK goes down from the participant stack.  F/W‟s see this as broken 
statefulness!

• The IMPACT – Applications in SD Mode:

• MF Loss of dynamic higher availability, reliability, workload balance and 24/7 up time.
• Applications impacted are:

• TN3270 
• CITRIX
• DB2
• FTP
• NDM
• CICS  ( IN PROCESS OF MOVING TOWARDS DATA SHARING) 
• MQ     ( IN PROCESS OF MOVING TOWARDS DATA SHARING)
• HTTP ( IN PROCESS OF MOVING TOWARDS DATA SHARING)
• WEB SHPERE  application servers – Java based  (Clustering via )



26

Campus and Mainframe Design  

Routing via BGP

XXXX1S5 XXXX2S5

OSA

OSA

Campus

EIGRP XX

FWSM - transparent

 firewall

Primary Alternate

SiSi SiSi

VLAN 109

VLAN 110

b
ri

d
g

e
vi

rt
u

al
in

te
rf

ac
e

XXXX1SC
XXXX2SC

SiSi SiSi

b
ri

d
g

e
vi

rt
u

al
in

te
rf

ac
e

OSPF Area 0 Routing via DWDM

XXXXX1S5
XXXXX2S5

FWSM - transparent  firewall
XXXXX1SC

XXXXX2SC

BVI: X.X.X.1/2   /27

X.X.X.0/27

X.X.X.64 /27

BVI: X.X.X.65/66  /27

192.168.AA.1 /32

192.168.BB.8,3 /32

In Cold Stanby
192.168.BB.1,3,8 /32

SiSi SiSi
XXXXXE01 XXXXXE02

Campus

EIGRP XX

SiSi SiSi
XXXXXE01 XXXXXE02

Thursday, February 26, 2009

IDM Campus Migration

Author: NSP &

IDM

®

VLAN 110

VLAN 109

X.X.X.3 /27
X.X.X.4 /27

X.X.X.5 /27 X.X.X.6  /27

X.X.X.67/ 27
X.X.X.68 / 27

X.X.X.69 /27 X.X.X.70  /27

BGP  64XXX

BGP  65XX1

EBGP EBGP

O
S

A
09

P
X

.X
.9

.0
 /2

7

O
S

A
11P

X
.X

.9.64 /27

O
S

A
09

R
X

.X
.1

91
.1

6 
/2

8

O
S

A
11R

X
.X

.191.32 /28

G1/3

X.X.9.11

G1/3

X.X.9.65

G1/3

X.X.191.26

G1/3

X.X.191.37



27

TCPIP 

The Lost of SYSPLEX Distribution 

• The OPTIONS:

• Enable our MPLS firewalls to behave like our former firewalls‟ infrastructure.

• CSM, Content Switch Module, CSM.  It‟s bidirectional, capable of inquiries to WLM  

information for true workload balancing.  Firewall balancing could still be achieved if CSM had 

this capability. 

• Note that entire DDVIPA architecture would be removed from the MF & onto CSM 

• Learning curve plus CISCO & IBM had not heard of any other organizations doing what we 

had hoped for.

• Would cost between $100 – to - 120K.  

• Policy Based Routing – a new feature just in time for our crisis, only available in z/OS 1.9 & 

above – part of communications server and no extra money.  

• The SOLUTION:

• Policy Based Routing Stimulus Package!  



28

TCPIP 
Policy Based Routing Stimulus Package (z/OS 1.9)

• Policy Based Routing Stimulus Package:  

• The Goal:

• We needed a way to preserve symmetry from the F/W‟s point of view; Re-Enable SYSPEX 
Distribution, at a Minimal Cost; in the most timely manner; and maintain XCF Packet relief.
Policy-based routing provides a routing option to send traffic based on source IP address. 
Using policy agent, the traffic criteria and policy-based routing tables are defined to the stack 
for routing 

• How it’s working for us:

• Policy based routing is enabled on the target stack.  
• We created MPC definitions directly connecting the Distributor & Target stack.
• We specify that DDVIPA source IP address packets be forwarded back to the Distributing 

Stack and thus  use that stacks main routing table to get back to the client
• This maintains statefulness from the F/W‟s point of view.
• We also specify that if the distributing stack is not available – for whatever reason, then use 

the main routing table on the target stack.          
• The Policy agent injects a static route into TCPIP‟s routing table.  Thus even if the policy agent 

address space crashes, the packets continue to be forwarded back to the distributing stack.
• We‟re @ 98% of what we have because the concept of  VIPABACKUP is moot under this 

configuration due to F/W statefulness being broken upon a VIPA take back.      



29

TCPIP 
Policy Based Routing Stimulus Package

SD‟s Back to Work – 98%    

(Available z/OS 1.9)

• Policy Based Routing Stimulus Package:  
Routing Configuration: Environmental file; Configuration File ; Configuration routing table

Environmental file: PAGENT_CONFIG_FILE=/etc/pagent.conf
PAGENT_LOG_FILE=/tmp/pagent.log 
TZ=EST5EDT,M3.2.0,M11.1.0

Configuration File: # TcpImage Statement to flush existing policies
TcpImage TCPIP FLUSH PURGE 60

# LogLevel Statement
Loglevel 511

# RoutingConfig Statements
RoutingConfig /etc/pagent_Routing.conf

Config Routing Table: There are three parts to it:

Routing Rule
RoutingAction
RouteTable

NOTE; we group in one section the DDVIPA addresses or else there would be multiple rules and 
actions.   It‟s called IpSourceAddrGroupRef We have:

One Rule to hold them;
One Action to reference them
One Routing table to establish them…
And in this state, BIND them.



30

TCPIP 
Policy Based Routing Stimulus Package

And SD‟s Back to Work – 98%    

( Available/OS 1.9)

• Sample of Configuration routing table grouping DDVIPA‟s

RoutingRule Rule1
{                                          
IpSourceAddrGroupRef LPAR2-addrGroup     
RoutingActionRef      LPAR2-SDPBR-Routing 
Priority              100                

}
# SD-PBR-Routing source ip address groups. 
# - Group DDVIPAs for policy based routing.
#                                          
IpAddrGroup LPAR2-addrGroup                 
{                                          
IpAddr                                   
{                                        
Addr 192.168.AA.ZZ                     

}                                        
IpAddr                                   
{                                        
Addr 192.168.AA.CC                     

}

RoutingAction  LPAR2-SDPBR-Routing
{                                
RouteTableRef       L2RteTbl   
UseMainRouteTable   Yes

}                                

#                                                      
RouteTable L2RteTbl                                    
{                                                      
Route 192.168.XX.YY    =                MPC123EL  MTU 1500 
Route Default          192.168.XX.YY MPC123EL  MTU 1500 
}                                                      



31

Campus and Mainframe Design

InterCEC Routing via CTC‟s 

XXXX1S5 XXXX2S5

OSA

OSA

Campus

EIGRP XX

FWSM - transparent

 firewall

Primary Alternate

SiSi SiSi

VLAN 109

VLAN 110

b
ri

d
g

e
v

ir
tu

a
l
in

te
rf

a
c

e

XXXX1SC
XXXX2SC

SiSi SiSi

b
ri

d
g

e
v
ir

tu
a

l
in

te
rf

a
c
e

OSPF Area 0 Routing via DWDM

XXXXX1S5
XXXXX2S5

FWSM - transparent  firewall
XXXXX1SC

XXXXX2SC

BVI: X.X.X.1/2   /27

X.X.X.0/27

X.X.X.64 /27

BVI: X.X.X.65/66  /27

192.168.AA.1 /32

192.168.BB.8,3 /32

In Cold Stanby
192.168.BB.1,3,8 /32

SiSi SiSi
XXXXXE01 XXXXXE02

Campus

EIGRP XX

SiSi SiSi
XXXXXE01 XXXXXE02

Thursday, February 26, 2009

IDM Campus Migration

Author: NSP &

IDM

®

VLAN 110

VLAN 109

X.X.X.3 /27
X.X.X.4 /27

X.X.X.5 /27 X.X.X.6  /27

X.X.X.67/ 27
X.X.X.68 / 27

X.X.X.69 /27 X.X.X.70  /27

BGP  64XXX

BGP  65XX1

EBGP EBGP

O
S

A
09

P
X

.X
.9

.0
 /2

7

O
S

A
1
1
P

X
.X

.9
.6

4
 /2

7

O
S

A
09

R
X

.X
.1

91
.1

6 
/2

8

O
S

A
1
1
R

X
.X

.1
9
1
.3

2
 /2

8

G1/3

X.X.9.11

G1/3

X.X.9.65

G1/3

X.X.191.26

G1/3

X.X.191.37

Redundant  CTC‟s



32

SYSPLEX Distribution 

Confirmation &  Simulation Methods

• SYSPLEX Simulation Methods with Policy Based Routing:

• In this section there are simulations where – L1 is Distributor / L2 is Target 
stack:

• Confirm / Level Set SYSPLEX Distribution mode as normal

• Simulate SYSPLEX Distributor engages target stack for workload balancing

• Simulate SYSPLEX failure on L1 - Distribution & advertisement are now from 

L2.

• Re -normalize SYSPLEX Distribution mode

• Simulate a PAGENT & OMPROUTE crash

*     SYSPLEX CONFIRMATION – NETSTAT commands I found most useful 

NOTE: SEE APPENDIX FOR DETAILS



33

IPL RELIEF ORDER & DEEPER LEVELS OF 

AVAILAILITY

• IPL relief Order:

• There was an incident where all LPARS were down and LPAR-2 was brought up before 

LPAR-1.  

• Connectivity was interrupted until LPAR-1 Came back up.

• IPL Relief Order was introduced by specifying DYNAMIC VIPA BLOCK along with all 

required VIPA Distribute statements on LPAR-2.  

• The order of statements are important:   (See appendix for further details)

• VIPADEFINE MOVEABLE IMMEDIATE

• VIPABACKUP 1 MOVEABLE IMMEDIATE

• VIPARANGE DEFINE MOVE DISRUPT

• VIPADISTRIBUTE 192.168.37.11 PORT 50005 > NOTE: NO VIPAROUTE ON TARGET STACK

DESTIP 192.168.12.33 192.168.12.34                       

• Deeper Levels Of Availability:

• VTAM & TCPIP – ARM‟D – (AUTMATIC RECOVERY MANAGER POLICIES – (Handled By MVS Group)

• OMPROUTE - ARM Wrapped – In Production OMPROUTE took an OC1 and was 

restarted  by ARM saving us much down time. (Of course a dump was produced – it was related to the 

LE environment.) 

• See APPENDIX for more details & JCL



34

INNOVATION: THE INDIGO CHILD

• WHY  “STATIC TO - DYNAMIC:

Our Enterprise is under the Umbrella of IP Application Centricity,  distancing new 

Applications away from the Stack‟s Identify.

Thus data sharing applications & SYSPLEX Distribution Benefit our clients via:   

• Doubling  availability

• Reliability

• Scalability

• Resource  Balance

• Optimal transaction  throughput

• Cross CEC CPU Life Extension 

HOWEVER

85 % Of our Internal & External Clients Still Target the Stack‟s Identity

Like an In & Out revolving mainframe Door  



Innovation: the Indigo Child

SYSPLEX Distribution

35



Innovation: the Indigo Child

SYSPLEX Distribution

• Our Goal:

• Our entire efforts of evolving from "Static - To - Dynamic", as it applies to the Stack's Identity / Primary 

Interface, has been and continues to be the highest exploitation  the SYSPLEX Distributor.  This 

pertains to enabling DDVIPA capabilities relative to the primary interface of the stack.  

• This  is specifically aimed to legacy applications that are constrained to use it exclusively.   About 85% 

of our  internal and external clients BIND to the stacks Identity.

• Posture the Stack's Identity to be DDVIPA capable, for data sharing capable applications,  

provides a re-doubling of availability while further balancing the IP workload.

• Provide SYSPLEX wide integrity relative to rolling IPL(s), Stack and/or LPAR Failure –

• This  became relevant as about 75% of our applications are data sharing capable but 

the remainder are not, thus pegged to the given LPAR.  Consideration had to taken to 

maintain their integrity in light of VIPA Take Over.

• Maintain Network connectivity tests available for Network Engineering group as TELNET, TRACERTE 

PINGS, NSLOOKUP / DNS resolution – UDP , are impacted.  

• All  of the above while maintaining Transparency to our Internal & external Clients!

36



Innovation: the Indigo Child

SYSPLEX Distribution

• Why not NAT to a different IP address versus converting the Stack's Identity / Primary Interface,  

from a static VIPA to A Dynamic VIPA.

• Converting the stack's identity from static to dynamic versus NATing, from our experiences, we've had issues with NATing, as 

other groups are involved.  

• Also The Firewalls have had issues being in synch with our various sites.  

• Inclusive to this, some bubble/extranet networks,, will do double/triple NATing.  NATing here will  add yet another level of 

complication in the environment when troubleshooting.

• issues with this type of double NATing, not to mention getting all the parties in synch when trouble shooting.  Inclusively, the 

application Can  the application folks support this in a seamless manner?   If so, MQ, NDM, Websphere, FTP, etc,  would each 

have a new IP(in line w/application centricity); So we're talking several manual NAT's(the target port would dictate the IP 

address)

• Our business that supports the financial industries, both national and global markets - our calculations indicate that in excess of 

337G of TCPIP bytes target our primary interfaces,   with a transactional value approaching US$2.5 Trillion in value 

flow through our veins on a typical day;  we deemed it too risky to expose our production environments to multi-tier 

diagnosis and support, should anything affect our many thousands of internal and external clients from connecting to the stack's

identity, a static VIPA.

• As such, the innovative solution to provide the remainder of our legacy clients and applications - approximately 85% our of 

connections in production, the dynamics of SYSPLEX Distribution was achieved by converting the stack's identity to a Dynamic 

VIPA. Once there, it was a short step to convert it to Distributed Dynamic VIPA for data sharing capable applications. 

• This maintained while providing SYSPLEX integrity for applications that were singly pegged to a given LPAR and also using the

stacks identity.

• The key to this was to make the transition 100% transparent, thus minimizing exposure or leakage of responsibility / support, to 

other entities external to the mainframe. 

• We conducted what we call ' Dress Rehearsals with representatives of all mainframe disciplines and key external clients.  It was

a kin to when we conduct Disaster Recovery tests.  Many proof of concepts to senior management were performed,  but all 

noted the gains of such an endeavor. 

37



Innovation: the Indigo Child

SYSPLEX Distribution

PHASE ONE: Stack’s Identity  /  Primary Interface Becomes A Dynamic VIPA – 95% There

Parameters and Listener Applications: 

A) TCPIP Profile:

1) Remove LPAR Static VIPA Statement from Home section

2) Remove Device / Link statements for  static VIPAS  

3) Remove Primary interface statement  

4) Add TCPSTACKSOURCEVIPA statement to Profile (Part of IPCONFIG section)  *

5) Add SRCIP statement for address spaces that  BIND first and Then Connect – MQ was susceptible to this**

6) Add in SRCIP block at the end JOBNAME    *   192.168.XX.Y    (The stacks Identity)  ***

7) Add VIPADEFINE statement for the stack IP address to Profile 

8) Create OBEYPRXX member with HEX ADDRESS of Prime Interface – ****

a) Example: PRIMARYINTERFACE VIPLC0A8YYXX 

b)  VIPL – required as prefix to the  to HEX representation of  IP address of stack‟s identity. 

c) 192.168. YY.XX in HEX: C0A8YYXX

9) Add DELAYSTART in AUTOLOG section  for all tasks started except OMPROUTE.

10) DO NOT Add VIPABACKUP Statement for the stack IP address in Partner PLEX Profile – in Phase Two.

38



Innovation: the Indigo Child

SYSPLEX Distribution

PHASE ONE: Stack’s Identity  /  Primary Interface Becomes A Dynamic VIPA – 95% There

Parameters and Listener Applications  (Continued):  

B) OMPROUTE CONFIG & MORE:

11) Remove LPAR Static VIPA Statement from OMPROUTE CONFIG.

a) We Use DVIPA Wildcard / Models in OMPROUTE – “One statement keeps the all”:

OSPF_Interface

IP_Address=192.168.AA.*                              

Name=dummyAA1

Subnet_Mask=255.255.255.0

12) Add automation for Obey of Primary Interface to DVIPA

a) After - EZD1214I INITIAL DYNAMIC VIPA PROCESSING HAS COMPLETED FOR TCPIP

b) OPENED OBEYFILE FILE „DSN.TCPIP.PROFILE(OBEYPRXX)„

13) Add LISTENONADDRESS statement to SMTP CONFIG 

14) OSNMPD PW.SRC file  - made  IP addresses conform to class „B‟ subnets

a)  This was to avoid having to add first IP address under the HOME list per LPAR.

15) BIND PASCL  applications – UPSTREAM is an example,  to primary interface via PORT statement.  

39



Innovation: the Indigo Child

SYSPLEX Distribution

• PHASE ONE: Stack’s Identity  /  Primary Interface Becomes A Dynamic VIPA – 95% There

• SOME HURDLES TO OVERCOME:

• C)      PINGS (ICMP)  & TRACRETE (UDP): 

1) PING  & TRACERTE  uses as SRCIP Address the interface  the packet goes out of.  Use the SRCIP  
Parameter to inject the primary interface IP address:

a)  TSO PING XXX.YYY.AA.X  (SRCIP 192.168.XX.YY

b)  NETVIEW PING XXX.YYY.AA.X    SRCIP 192.168.XX.YY 

OR 

PING XXX.YYY.AA.X  - Z  192.168.XX.YY

a)  TSO TRACRTE  XXX.YYY.AA.X  (SRCIP 192.168.XX.YY

b)  NETVIEW TRACERTE XX.YYY.AA.X    SRCIP 192.168.XX.YY 

OR 

TRACERTE  XXX.YYY.AA.X  - Z  192.168.XX.YY

40



Innovation: the Indigo Child

SYSPLEX Distribution

• PHASE ONE: Stack’s Identity  /  Primary Interface Becomes A Dynamic VIPA – 95% There

• SOME HURDLES TO OVERCOME (continued):

• D)      NSLOOKUP / DNS (UDP): 

1) Our DNS servers are in the CAMPUS – VS – Main Frame.   

We addressed this issue via Firewall  UPDATES.

• E)      FIREWALL UPDATES : 

1) OSAs - We added the Class „C‟ subnets of our OSAS(S) to the Firewalls.

2)   By Doing this we accomplished 3 things:

a)   General Internal PINGS  now did not need the SRCIP  to be injected into the packet.

b)   General Internal TRACRTE now did not need the SRCIP to be injected into the packet.

c)   NSLOOKUP / DNS work fine.

3) HOWEVER – FOR EXTERNAL CLIENTS,  TRACERTE REQUIRES THE SRCIP INJECTION.

***** Our Enterprise FLAGSHIP  for  these activities is ‘INSIDE THE STACK’ - - It handles SRCIP  injection as 
required. 

41



Innovation: the Indigo Child

SYSPLEX Distribution

• PHASE ONE: Stack’s Identity  /  Primary Interface Becomes A Dynamic VIPA – 95% There

• SOME HURDLES TO OVERCOME (Continued):

• F)      Connectivity Tester (CONNTEST) – VS - TELNET

As previously discussed we had to develop  CONNTEST, as we  evolved towards IP Application 

Centricity.

As it turned out, It would also be required  for our „Static – To – Dynamic „ 

conversions!!!

In Brief:

• TELNET was used by our NEO Group to confirm F/W & Connectivity.   

• As we continued to evolve into Application IP Centricity, - where an application listens on a 

specific IP address, the ability to inject a source IP address assigned to an application  is 

mandatory. 

• IP Application centricity  & „Static – To – Dynamic – came to a grinding halt  TELNET uses 

RAW sockets logic  and is not a true TCP protocol.  SRCIP would be interface it went out of. 

42



Innovation: the Indigo Child

SYSPLEX Distribution

• PHASE TWO: Stack’s Identity / Primary Interface becomes a Distributed Dynamic  VIPA –

• Required Parameters:

• After all had been set and done, and many hurdles overcome,  to achieve the final step

seemed an easy affair…

IN GENERAL , JUST 2 LINES OF CODE AS NOTED BELOW On Distributor Stack & 1 line on Target:

* Under the VIPADYNAMIC BLOCK Simply add the  IP address of the Stack‟s Identity along with the PORT that represent 
data sharing capable applications Such as PORT 23:  

VIPADISTRIBUTE SYSPLEXPORTS 192.168.XXY PORT 23  

DESTIP 192.168.AA.BB 192.168.AA.CC 

VIPABACKUP On Target Stack

BUT NOOOOOO!

43



Innovation: the Indigo Child

SYSPLEX Distribution

• PHASE TWO: Stack’s Identity / Primary Interface becomes a Distributed Dynamic  

VIPA –

• The Special Case Of DB2 & MQ:

Background:

Some DB2 & MQ was still anchored to the Stack‟s Identity.

Rolling IPL(s) would cause  the Stack‟s  Identity to temporarily be taken and advertised from the participating 

stack.

Down stream  servers would constantly try to establish a session with the stacks Identity  &  DB2 – That had 

now moved to the participating stack , if the connection was broken at any time.       

As Previously mentioned,  there are two sets of firewalls, per site.  The two are in VRRP mode where one is 

active and the other in standby.  This design‟s objective is to balance firewall traffic.

• The Problem:

• Down Stream servers would establish a session with DB2 on LPAR-2, Target stack..  

• LPAR-1, the distributing Stack,  comes  back up;  takes back  its Identity.

• State Fullness would be broken.

• But the sessions stayed established & the MQ region needed by DB2 / DERIV server  was  always on LPAR-1 

and not capable of data sharing.  

44



Innovation: The Indigo Child

SYSPLEX Distribution

PHASE TWO: Stack’s Identity / Primary Interface becomes a 

Distributed Dynamic  VIPA –

The Special Case Of DB2 & MQ (Continued):

The SOLUTION:

* The SYSPLEX Integrity Checker – Newly Developed Code.   It Confirmed that  no lingering  
sessions remain on  The Participating Stack or the Target stack that did not belong there.

* It kicked in when the participating cross CEC stack(s) had joined the SYSPELX Group.

* Performed via  NETVIEW .MORE ON THIS LATER. 

* NEW DB2 IP Application Centric  Infrastructure.

* Newly Developed Code to Track the Migration  - PER  PLEX. (VIA SMF 119 & NSLOOKUP) 

45



Innovation: The Indigo Child

SYSPLEX Distribution

• NEW DB2 IP Application Centric  Infrastructure:

Below is a Sample:

46

                 TPLX DVIPA DDVIPA

              DNSDB2DBADS 192.168.XX.YY1 50040

              DNSDB2DB1A 192.168.XX.YY2

              DNSDB2DB2A 192.168.XX.YY3

              DNSDB2DB3A 192.168.XX.YY4

              DNSDB2DBBDS 192.168.XX.YY5 50050

              DNSTDB2DB1B 192.168.XX.YY6

              DNSDB2DB2B 192.168.XX.YY7

              DNSDB2DB3B 192.168.XX.YY8 

              DNSDB2DBDDS 192.168.XX.YY9 50020

              DNSDB2DB1D 192.168.XX.YYA

              DNSDB2DB2D 192.168.XX.YYB

              DNSDB2DB3D 192.168.XX.YYC



Innovation: The Indigo Child

SYSPLEX Distribution

• PHASE TWO: Stack’s Identity / Primary Interface becomes a 

Distributed Dynamic  VIPA –

SYSPLEX Integrity Checker Specifications:

• The SYSPLEX Integrity Utility.   This utility will know the state of the PLEX 
and perform cleanup of any connections that should not be on a given 
stack.  

Example:  The Primary interface of LPAR-1 should never be in 

established states on LPAR-2,  under normalized conditions. 

47



Innovation: The Indigo Child

SYSPLEX Distribution

SYSPLEX Integrity Checker Specifications (Continued):

1) Written in REXX, it will be executed  3/  5 mins after NETVIEW initializes - giving time for other applications, 

such as DB2 to initialize.

2) Three inputs:

a) Output from NETSTAT CONN for established states under the local sockets section

b) Input dataset relative to each PLEX participant, indicating which address(es) that should not be in 

established local states:

I.E.    192.168.XX.1, LPAR- 1,  should never be in an established state - Local Socket, on 192.168.XX.2,  

LPAR-2, under normal operations.

c) Participant's SYSID  - needed to know when PLEX is  normalized. 

3) How often should the code execute?

a) It will kick off  3 / 5  minutes after NETVIEW is initiated - Automatic timer in NETVIEW; 

b) It must know if  the PLEX is normalized.  That would be when all relevant stacks have joined the SYSPLEX 

Group.  (VIA - D TCPIP,,SYSPLEX,VIPADYN)

b.1) Has Participant stack has joined and is active

b.2) If "YES", execute cleanup routine and terminate

b3.)  If not, go into a WAIT state for 1 min and check again.  Continue this LOOP until participant stack is  

ACTIVE      then execute section b.2.  

c) When  a match is found in its cleanup routine, it will inform us - possibly via email.

(See Appendix for more details )

48



Innovation: The Indigo Child

SYSPLEX Distribution

The Stack’s Identity Becomes a Distributed Dynamic VIPA!!! 

100% There!!!

Sample Of Exploitation – ‘A Story’:

As we've continued to evolve  and exploit our SYSPLEX Distribution environment,  we became aware that 

over 2500 PC's were going to be upgraded to have a new Extra Attachmate that  would've used a new 

SYSPLEX Distributed IP address and Port.  About 10%  of the campus had complied  - 90 %  were  a 

bit slow to change.  

The intent was to double their availability & balance our resources, for campus users into the 

mainframe.

All that was negated and the same goals achieved with 4 lines of code in TCPIP, - 2 per SYSPLEX 

stack. This benefited the Desk Top engineering Group, been involved in  pushing the new Attachmate plus 

supporting the campus with the new modifications.  

**** Over 1500 TN3270 users were  now balanced across the PLEX  -VS- on One LPAR.

And there it is:

Now That was  a MAJOR Voyage & FUN!!!! 

And There Is Now More Than One Revolving Door…  49



Innovation: the Indigo Child

SYSPLEX Distribution

50



51

CONCLUSION

MAY WE ALL CONTINUE TO 

RECEIVE TO SHARE

&

SHARE TO RECEIVE



52

Appendices

• SUBJECTS:
• DNS naming conventions

• CONNTEST Socket Program

• DVIPA & Policy Based Routing Commands 

• IPL Relief order – Sample statements

• OMPROUTE ARM‟D JCL & ARM POLICY Commands.

• SYSPLEX SIMULATION METHODS & POLICY BASED ROUTING 

• Useful NETSTAT DVIPA COMMANDS 

• POLICY AGENT JCL 

• VTAM GENERICS & SYSPLEX  Distribution – Their Joining sample



53

Appendices

• DNS naming conventions – I.E – MQ, CICS, DB2
• Regarding DNS naming conventions, from the Network perspective, current and future directions, there are two sides to 

the DNS coin.

• Facilitate connectivity for our clients enabling access without changes from their point of view.  IP addresses can 
change with transparency to the end user

• From the Network perspective, the new DNS naming convention will facilitate better Diagnostics as we will be 
able to tell at a glance where the application normally resides, the type of application and even the Job Name of 
the given address space

• The DNS naming conventions also will reflect if the address is a distributed address,  SYSPLEX Distributor, or if it‟s a 
Dynamic VIPA that follows the given address space.

• General: Using T-PLEX as an example:
Bytes:
1-2 SM --- Server Mainframe

SM
----------------------------------------------------------------------------------------------------------------------------
For NON Distributed - DVIPA follows Region:
3- 4  TT/ PP/ ZZ/ UU/ QQ    T test,  P production,   Z for dev,  U user testing,  Q  internal QA
SMTT
For Distributed - DDVIPA address - SYSPLEX Distributor - one IP address serves all participant  application.  The uniqueness 
is a function of the ports....thus a unique socket, the IP address and port, the address space listens on.  
3 - 5 TDS    for distributed 

SMTDS
The Applications:
For Distributed:
6 - 7 and/or 8 

SMTDSMQ

SMTDSCIC
SMTDSDB2

----------------------------------------------------------------------------------------------------------------------------
For Non - Distributed - DVIPA follows the Region:
5 - 6 The given application type - MQ / CI - (FOR CICS) / DB2



54

Appendices

• DNS naming conventions – I.E – MQ, CICS, DB2
SMTTMQ

SMTTCI

SMTTDB

----------------------------------------------------------------------------------------------------------------------------

The individual address space:

7 - 8

MQ - The 3rd and 4th bytes of the Job Name reflect the individual address space. -They would be the 

7th and 8th bytes of the DNS name.

CICS - The 7th and 8th bytes of the Job Name  reflect the individual address space . - They would be the 

7th and 8th bytes of the DNS name.

DB2 - The 3rd and 4th bytes of the Job Name reflect the individual address space. -They would be the 

7th and 8th bytes of the DNS name

EXAMPLE: Below is an Example of the DNS names and its relation to the address space.  

Job Name; MUE1CHIN DNS Name:

SMTTMQE1

CICPCTG1 DNS Name:

SMTTCIG1

DB2TDIST DNS Name:

SMTTDB2T

----------------------------------------------------------------------------------------------------------------------------

Anomalies that fall out of the norm, would be reviewed individually.



55

Appendices

• CONNTEST Connectivity Tester
• An Diagnostic socket program, (REXX), developed for IP Application Centricity where each 

application is assigned a unique IP address.  It has the capability to inject a source IP.  Previously, 
TELNET was used for connectivity tests, passing F/W’s etc.  

• NOTE:  This is not the exact code in use but its enough to get started.

If needed please email me with SHARE in the subject & CONNTEST.

/* rexx new code                                       */          

/* 05/06/08 this pgm tests connectivity to any port    */          

/* from either the primary ip address (default) or     */          

/* specifying a source ip address to allow for dvipa   */          

/* checking.                                           */          

/*******************************************************/          

VAR = SOCKET('INITIALIZE','WXYZ')                                  

/* PARSE arg dst_ADDR PORT   */                                    

PARSE arg dstAddr PORT srcAddr                                     

if dstAddr = '' | port = '' then DO                                

SAY 'INVALID SYNTAX. Correct CMD is CONNTEST <dstAddr> <PORT>'     

exit                                   

end                                    

if srcAddr = '' then do                                            

x = Socket('getHostId')                       

srcAddr = word(x,2)                           

say 'NO SRC ADDRESS PASSED - USING HOSTID ' srcaddr   

end                                                

VAR = SOCKET('SOCKET')



56

Appendices

• CONNTEST Connectivity Tester (continued)

SOCKETID = WORD(VAR,2)                                               

VAR = SOCKET('bind',SOCKETID,'AF_INET 0' srcAddr)                    

say 'SRC ADDRESS AFTER THE BIND ' SRCADDR                            

SAY 'CONNECTING TO 'dstAddr 'ON PORT' PORT 'SRC ADDRESS' srcAddr     

CONNAME='AF_INET '||PORT||' '||dstAddr                               

VAR = SOCKET('CONNECT',SOCKETID,CONNAME)                             

SAY 'RESULT OF CONNECTING TO 'dstAddr 'ON PORT' PORT                 

if var = 0 then                                                      

say 'connection successful'                               

else if 2019 = word(var,1)                                           

then say 'UNKNOWN HOST' dstaddr                                      

else if 60   = word(var,1)                                           

then say 'Foreign host did not respond within OPEN timeout' dstaddr  

else if 61   = word(var,1)                                           

then say 'Connection refused' dstaddr                                

else say var                                                         

EXIT



57

SYSPLEX Distribution 

Confirmation &  Simulation Methods

• SYSPLEX Simulation Methods with Policy Base Routing
• VIPAROUTE on Distributor (L1) & Policy Based Routing On Target Stack (L2)

• In our tests a dedicated DDVIPA & Port was used  - TELNET from campus to MF

• Normal SYSPLEX Distribution mode:
• DDVIPA 192.168.XX.YY advertised from L1 –

• Confirm via: D TCPIP,,OMPR,OSPF,LIST,ALL – Towards Bottom of Display:
ADVERTISED VIPA ROUTES
192.168.XX.YY /255.255.255.255

• TN3270 Address space listening on PORT 2320 – L1 / L2   
• Telnet to from campus to 192.168.XX.YY  2320  Confirm on L1 – Better WLM PI

• Simulate SYSPLEX Distributor to engage L2 for workload balancing:
• TN3270 Address space listening on PORT 2320 – L2 only via a Quiesce of TN3270 port 2320 on L1:

• V TCPIP,,SYSPLEX,QUIESCE,PORT=2320   issue from L1
• Telnet  from campus to 192.168.XX.YY  2320  Confirm via NETSTA CONN on L2

• Simulate SYSPLEX failure on L1 - Distribution & advertisement are now from L2:

• DDVIPA not Advertised from L2:
• V TCPIP,,SYSPLEX,DEACTIVATE,DVIPA=192.168.XX.YY Confirm OPR CMD on L1.
• Policy Based routing enabled on L2.
• Stop the MPC connections via a Stop Device command on L1.
• Telnet to from campus to 192.168.XX.YY  2320  Confirm via NETSTAT CONN on L2

• D TCPIP,,ROUTE,PR=ALL                      Notice route table & Reference count – 1 (Me) 

• Kill Policy Agent on L2 – Session is still active.
• Break TELNET session and reestablish session  Session re-established!!!!!!

• Renormalize The environment:
• V TCPIP,,SYSPLEX,REACTIVATE,DVIPA=192.168.XX.YY    From L1 – re-advertise DDVIPA
• V TCPIP,,SYSPLEX,RESUME,PORT=2320                   From L1 – R-activate the TELNET Port



58

POLICY AGENT JCL

• Sample JCL & Routing Configuration: - (See Appendix for details) 

//PAGENT   PROC                                                       

//*                                                                   

//PAGENT   EXEC PGM=PAGENT,REGION=0K,TIME=NOLIMIT,                    

//       PARM='POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/-

D8

//*                                                                   

//STDENV   DD PATH='/etc/pagent.env',PATHOPTS=(ORDONLY)

//*                                                                   

//SYSPRINT DD SYSOUT=*                                                

//SYSOUT   DD SYSOUT=*                                                

//*                                                                   

//CEEDUMP  DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

•



59

SYSPLEX  Integrity Checker 

• SYSPLEX  Integrity Checker – FROM NETVIEW Written in REXX:

• /*******************************************************/    

• /* rexx new code: RW / SP - SYSPLEX INTEGRITY CHECKER  */    

• /* 09/29/09 THIS CODE FIRST CONFIRMS THE STATE OF THE  */    

• /*          PLEX & EXECUTES WHEN ALL PARTICIPANTS      */    

• /*          STACKS HAVE JOINED THE SYSPLEX GROUP.     */     

• /* 09/24/09 this pgm confirms the proper vipa addresses*/    

• /*          are active on the correct lpar.  If by     */    

• /*          chance an ip addr is not supposed to be    */    

• /*          there, it will be dropped.                 */    

• /*******************************************************/    

• /* trace r */                                                

• init:                                                        

• say 'Initializing Routine Active'                            

• found = 'none'                                               

• count = 3                                                    

• IF MVSVAR('SYSNAME') = 'LPAR-1' THEN do                      

• 'PIPE QSAM (DSN) 'NETZ.LPAR-1.IPADDRS.SYSPLEX'',          

• '| STEM ipaddr. '                     

• stack = 'LPAR-2' 



60

SYSPLEX  Integrity Checker 

• SYSPLEX  Integrity Checker – FROM NETVIEW Written in REXX:

• say 'Participant Stack is ='stack         

• /*   say 'found should be NONE ='found */      

• end                                                              

• /*                                                              

• IF MVSVAR('SYSNAME') = 'LPAR-2' THEN do                          

• 'PIPE QSAM (DSN) 'NETT.LPAR-2.IPADDRS.SYSPLEX'',              

• '| STEM ipaddr. '                                            

• stack = 'LPAR-1'                                             

• end                                       

• */                                                             

• suprvsr:                                                         

• found = 'none'                                                   

• say 'In Supervisor Routine'                                      

• say 'Number Of Times Left In - Simulating Wait States = ' count  

• /* say 'found should be NONE ='found */                        

• if count = 0 then do                                             

• say 'Finished Simuliting Wait States - Count = ' count        

• say 'Exiting!!!!!!'                                           

• exit                                                          

• end



61

SYSPLEX  Integrity Checker 

• SYSPLEX  Integrity Checker – FROM NETVIEW Written in REXX:

• say 'Calling the Collector'                                      

• call collect                                                     

• /*****************************************************/          

• /*****************************************************/          

• /*****************************************************/          

• call checker                                                     

• If found = 'done' then do                                     

• say 'We FOUND IT!!!'                                          

• say 'Calling Cleaner'                                         

• call cleaner                                                  

• end                                                           

• else do                                                       

• /*  say 'Waiting For 1 Second & Collect Again' */             

• count = count - 1                                             

• wait 1                                                        

• call suprvsr

• end                                                           

• /******************************************************/        

• /******************************************************/        

• /******************************************************/



62

SYSPLEX  Integrity Checker 

• SYSPLEX  Integrity Checker – FROM NETVIEW Written in REXX:

• collect:                                                        

• say 'in collection routine'                                     

• 'pipe mvs d tcpip,,sysplex,vipadyn |corrwait 3 ',               

• '|collect ',                                                    

• '| sep ',                                                       

• '| locate /ACTIVE/',                                            

• '| stem msg.  '                                                 

• say 'record number is ='msg.0                                   

• return                                                          

• /*************************************************************/ 

• /*************************************************************/ 

• /*************************************************************/ 

• checker:                                                         

• say 'in checker routine'                                         

• do ii = 1 to msg.0                                               

• parse var msg.ii w1 w2 stat w4                               

• /*say 'we are in record ='msg.ii */                            

• if  stack  = w2  then do                                     

• found = 'done'                                           

• say 'searching found ='found 



63

SYSPLEX  Integrity Checker 

• SYSPLEX  Integrity Checker – FROM NETVIEW Written in REXX:

• return                                                          

• end                                                             

• end                                                                  

• say 'Did Not Find Participant Stack - Found ='found                  

• say 'Going Back To Supervisor To Wait & Collect'                     

• return                                                               

• /*************************************************************/     

• /*************************************************************/     

• /*************************************************************/     

• cleaner:                                                            

• SAY 'OK!  FINALLY IN CLEANER!'                                      

• SAY 'OK!  FINALLY IN CLEANER!'                                      

• SAY 'OK!  FINALLY IN CLEANER!'                                      

• 'pipe mvs d tcpip,,netstat,conn,max=* |corrwait 10 ',               

• '|collect ',                                                        

• '| sep ',                                                           

• '| locate /Listen/',                                                

• '| stem msg.  '                                                     

• do ii = 1 to msg.0                                                   

• Jobn = substr(msg.ii,1,8) 



64

SYSPLEX  Integrity Checker 

• SYSPLEX  Integrity Checker – FROM NETVIEW Written in REXX:

• conn = substr(msg.ii,10,8)                                  

• addr = substr(msg.ii,19,15)                                 

• if substr(addr,1,1)  = '*'  then addr = msg.ii + 1          

• if substr(addr,11,2) = '..' then addr = substr(msg.ii,19,11)

• if substr(addr,12,2) = '..' then addr = substr(msg.ii,19,12)

• if substr(addr,13,2) = '..' then addr = substr(msg.ii,19,13)

• if substr(addr,14,2) = '..' then addr = substr(msg.ii,19,14)

• addr = strip(addr,t,'.')  /* get rid of trailing dots */    

• if jobn = 'NETEXIG ' then do                                

• say 'found negligence ='jobn

• 'mvs d tcpip,,n,conn,cli='jobn

• exit                                                      

• end                                                         

• /* say 'jobn = 'jobn 'conn = 'conn 'addr = 'addr */         

• do xx = 1 to ipaddr.0                                      

• if addr = ipaddr.xx then do                      

• say 'we matched the ipaddr' addr conn jobn

• end                                              

• end                                                        

• end 



65

SYSPLEX  Integrity Checker 

• SYSPLEX  Integrity Checker – FROM NETVIEW Written in REXX:

• say 'WELL DONE!'                                                 

• say 'WELL DONE!'                                                 

• say 'WELL DONE!'                                                 

• exit                                                                 

• if jobn = 'NETEXIG' then do                                       

• 'mvs d tcpip,,n,conn,cli='jobn

• exit                                                              

• /*                                                               */  

• /* say 'we are in record ='msg.ii */                             

• /* say 'w1 ='w1 'w2 ='w2 'stat ='stat 'w4 ='w4 */ 


